Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T22:04:16.291Z Has data issue: false hasContentIssue false

On the existence and significance of lipid peroxides in vitamin E-deficient animals

Published online by Cambridge University Press:  23 November 2009

J. Bunyan
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Elspeth A. Murrell
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Green
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
A. T. Diplock
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A micro-adaptation of the iodimetric method has been used to determine lipid peroxides in the tissues of vitamin E-deficient rats and chicks.

2. No increases in lipid peroxide were found in liver, kidney or adipose tissue of rats with nutritional liver necrosis due to deficiency of vitamin E and selenium. When liver necrosis was induced by giving rats a casein diet and silver acetate solution to drink, the peroxide value of the adipose tissue was not increased.

3. Degeneration of the testes of vitamin E-deficient rats was not accompanied by a rise in the peroxide value of the tissue lipids.

4. There was an increase in cathepsin activity of the kidneys of rats displaying the phenomenon of renal autolysis (post mortem), but there was no increase in lipid peroxide content.

5. No rise in lipid peroxide was found in dystrophic chick breast muscle, in cerebellum, brain and adipose tissue of chicks with encephalomalacia nor in the liver of chicks with exudative diathesis.

6. In rat liver, kidney, testis and leg muscle, peroxide values in the range 10–40 µ-equiv./g lipid were found, and these values were not altered either by a substantial change in the degree of unsaturation of the dietary lipid or by the addition of vitamin E to the diet. Dietary addition of N, N'-diphenyl-p-phenylenediamine (DPPD) or 6-ethoxy-1, 2-dihydro-2,2,4-trime-thylquinoline (ethoxyquin) also failed to affect the peroxide value of liver. The possibility that lipid peroxide is a normal metabolite of these tissues is discussed.

7. Peroxide values of rat adipose tissue were never found to be greater than 40 µ-equiv./g lipid and were readily decreased by the addition of vitamin E to the diet or by a decrease in the unsaturation of the dietary lipid. The peroxide content of this tissue may depend upon the up-take of peroxidized dietary lipid.

8. The conclusion from this study of true lipid peroxides in animal tissues is that the biological role of vitamin E is not connected with lipid peroxidation in vivo, in agreement with our previous studies on the metabolism of the fatty acid substrates of peroxidation and of α-tocopherol and other postulated biological antioxidants.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Aaes-Jorgensen, E. (1949). Int. Congr. Biochem. I. Cambridge. Abstr. Commun. p. 57.Google Scholar
Barber, A. A. (1963). Rad. Res. Suppl. 3, 33.CrossRefGoogle Scholar
Bieri, J. G. & Anderson, A. A. (1960). Archs Biochem. Biophys. 90, 50.CrossRefGoogle Scholar
Bieri, J. G. & Andrews, E. L. (1964). Biochem. Biophys. Res. Commun. 17, 115.CrossRefGoogle Scholar
Bird, J. W. C. & Szabo, N. A. B. (1964). Proc. Soc. exp. Biol. Med. 117, 345.CrossRefGoogle Scholar
British Standards Institution (1958). British Standard 684. Methods of Analysis of Oils and Fats, p. 84. London: British Standards Institution.Google Scholar
Bunyan, J., Diplock, A.T., Edwin, E. E. & Green, J. (1962). Br. J. Nutr. 16, 519.CrossRefGoogle Scholar
Bunyan, J., Diplock, A. T. & Green, J. (1967). Br. J. Nutr. 21, 217.CrossRefGoogle Scholar
Bunyan, J., Green, J. & Diplock, A. T. (1963). Br. J. Nutr. 17, I17.Google Scholar
Bunyan, J., Green, J., Diplock, A. T. & Robinson, D. (1967 a). Br. J. Nutr. 21, 127.CrossRefGoogle Scholar
Bunyan, J., Green, J., Diplock, A. T. & Robinson, D. (1967 b). Br. J. Nutr. 21, 147.CrossRefGoogle Scholar
Bunyan, J., McHale, D. & Green, J. (1963). Br. J. Nutr. 17, 391.CrossRefGoogle Scholar
Caputto, R., McCay, P. B. & Carpenter, M. P. (1961). Am. J. clin. Nutr. 9, no. 4, part 2, p. 61.CrossRefGoogle Scholar
Christensen, F., Dam, H., Prange, I. & Sondergaard, E. (1958). Acta pharmac. tox. 15, 181.CrossRefGoogle Scholar
Corwin, L. M. (1962). Archs Biochem. Biophys. 97, 51.CrossRefGoogle Scholar
Dam, H. (1962). Vitams Horm. 20, 527.CrossRefGoogle Scholar
Dam, H. & Granados, H. (1945). Acta physiol. scand. 10, 162.CrossRefGoogle Scholar
Diplock, A. T., Bunyan, J., McHale, D. & Green, J. (1967). Br. Nutr. 21, 103.CrossRefGoogle Scholar
Diplock, A. T., Green, J., Bunyan, J., McHale, D. & Muthy, I. (1967). Br. J. Nutr. 21, 115.CrossRefGoogle Scholar
El-Khatib, S., Chenau, U. A., Carpenter, M. P., Trucco, R. E. & Caputto, R. (1964). Nature, Lond. 201, 188.CrossRefGoogle Scholar
Emmel, V. M. (1957). J. Nutr. 61, 51.CrossRefGoogle Scholar
Emmel, V. M. & LaCelle, P. L. (1961). J. Nutr. 75, 335.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Glavind, J. & Hartmann, S. (1956). Acta chem. scand. 10, 1298.CrossRefGoogle Scholar
Glavind, J. & Hartmann, S. (1961). Acta chem. scand. 15, 1927.CrossRefGoogle Scholar
Glavind, J., Søndergaard, E. & Dam, H. (1961). Acta pharmac. tox. 18, 267.CrossRefGoogle Scholar
Green, J., Diplock, A. T., Bunyan, J., McHale, D. & Muthy, I. (1967). Br. J. Nutr. 21, 69.CrossRefGoogle Scholar
Hamm, D. L., Hammond, E. G., Parvanah, V. & Snyder, H. E. (1965). J. Am. Oil Chem. Soc. 42, 920.CrossRefGoogle Scholar
Heaton, F. W. & Uri, N. (1958). J. Sci. Fd Agric. 9, 781.CrossRefGoogle Scholar
Hove, E. L. & Harris, P. L. (1946). J. Nutr. 31, 699.CrossRefGoogle Scholar
King, A. E., Roschen, H. L. & Irwin, W. H. (1933). Oil and Soap, 10, 105.CrossRefGoogle Scholar
Lea, C. H. (1952). J. Sci. Fd Agric. 3, 586.CrossRefGoogle Scholar
MacGee, J. (1959). Analyt. Chem. 31, 298.CrossRefGoogle Scholar
Milas, N. A., Harris, R. S. & Golubovic, A. (1963). Rad. Res. Suppl. 3, 71.CrossRefGoogle Scholar
Moore, T., Sharman, I. M. & Symonds, K. R. (1958). J. Nutr. 65, 183.CrossRefGoogle Scholar
O'Brien, P.J. & Frazer, A. C. (1966). Proc. Nutr. Soc. 25, 9.CrossRefGoogle Scholar
Oette, K., Petersen, M. L. & McAuley, R. L. (1963). J. Lipid Res. 4, 212.CrossRefGoogle Scholar
Pritchard, E. T. & Singh, H. (1960). Biochem. biophys. Res. Commun. 2, 184.CrossRefGoogle Scholar
Privett, O.S. & Quackenbush, F. W. (1954). J. Am. Oil Chem. Soc. 31, 281.CrossRefGoogle Scholar
Recknagel, R. O. & Ghoshal, A. K. (1966). Exp. molec. Path. 5, 108.CrossRefGoogle Scholar
Schwarz, K. (1962). In Lipids and their Oxidation, p. 387. [Schultz, H. W., editor.] Westport, Connecti-cut: The Avi Publishing Co., Inc.Google Scholar
Stamm, J. (1925). Bull. Soc. Pharm. Esthonia 5, 181.Google Scholar
Tappel, A. L. (1962). In Lipids and their Oxidation, p. 367. [Schultz, H. W., editor.] Westport, Connecticut: The Avi Publishing Co. Inc.Google Scholar
Witting, L. A. & Horwitt, M. K. (1964). J. Nutr. 82, 19.CrossRefGoogle Scholar
Witting, L. A. & Horwitt, M. K. (1966). Fedn Proc. Fedn Am. Socs exp. Biol. 25, 241.Google Scholar
Zalkin, H. & Tappel, A. L. (1960). Archs Biochem. Biophys. 88, 113.CrossRefGoogle Scholar
Zalkin, H., Tappel, A. L., Caldwell, K. A., Shibko, S., Desai, I. D. & Holliday, T. A. (1962). J. biol. Chem. 237, 2678.CrossRefGoogle Scholar
Zalkin, H., Tappel, A. L. & Jordan, J. R. (1960). Archs Biochem. Biophys. 91, 117.CrossRefGoogle Scholar