Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:47:22.263Z Has data issue: false hasContentIssue false

Mechanisms of heat damage in proteins

4. The reactive lysine content of heat-damaged material as measured in different ways*

Published online by Cambridge University Press:  24 July 2007

R. F. Hurrell
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
K. J. Carpenter
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Analyses have been made of materials in which proteins were caused to react with sugars so as to cause a severe fall in their nutritionally available lysine content as assayed with both rats and chicks.

2. With materials in which the reactions had proceeded under mild conditions (37°), the direct use of either fluorodinitrobenzene (FDNB), o-methylisourea or sodium borohydride to measure selectively those lysine units which had not engaged in Maillard reactions gave similar values which, in turn, appeared to reflect the full extent of the nutritional damage.

3. Analysis by a procedure using trinitrobenzenesulphonic acid (TNBS), or the use of FDNB indirectly to measure ‘bound lysine’ failed to indicate the full extent of the Maillard reaction in mildly heated materials, although the same procedures did appear to do so when applied to materials in which sugar and proteins had been allowed to react at a higher temperature.

4. With a pure protein and with fat-extracted, dried muscle that had been severely heated, all the procedures for measuring reactive lysine gave similar results, with the exception of the procedure using sodium borohydride which proved ineffective in measuring the type of damage that had occurred in these materials.

5. The findings are discussed in relation to the nature of the reactions believed to take place in different types of heat damage.

6. Suggestions are made of the types of materials with which different procedures can be satisfactorily used. The direct FDNB procedure and that using o-methylisourea appeared to be applicable to all our samples.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Bjarnason, J. & Carpenter, K. J. (1969). Br. J. Nutr. 23, 859.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1970). Br. J. Nutr. 24, 313.CrossRefGoogle Scholar
Block, R. J., Cannon, P. R., Wissler, R. W., Steffee, C. H. Jr, Straube, R. L., Frazier, L. E. & Woolridge, R. L. (1946). Archs Biochem. 10, 295.Google Scholar
Blom, L., Hendricks, P. & Caris, J. (1967). Analyt. Biochem. 21, 382.CrossRefGoogle Scholar
Boctor, A. M. & Harper, A. E. (1968). J. Nutr. 94, 289.CrossRefGoogle Scholar
Booth, V. H. (1971). J. Sci. Fd Agric. 22, 658.CrossRefGoogle Scholar
Bujard, E., Handwerck, V. & Mauron, J. (1967). J. Sci. Fd Agric. 18, 52.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Carpenter, K. J. (1973). Nutr. Abstr. Rev. 43, 424.Google Scholar
Carpenter, K. J. & Ellinger, G. M. (1955). Biochem. J. 61, xi.Google Scholar
Carpenter, K. J., March, B. E., Milner, C. K. & Campbell, R. C. (1963). Br. J. Nutr. 17, 309.CrossRefGoogle Scholar
Carpenter, K. J., Morgan, C. B., Lea, C. H. & Parr, L. J. (1962). Br. J. Nutr. 16, 451.CrossRefGoogle Scholar
Chervenka, C. H. & Wilcox, P. E. (1956). J. biol. Chem. 222, 635.CrossRefGoogle Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, Lond. 95, 181.CrossRefGoogle Scholar
Dixon, H. B. F. (1972). Biochem. J. 129, 203.CrossRefGoogle Scholar
Erbersdobler, H. (1970). Milchwissenschaft 25, 280.Google Scholar
Erbersdobler, H. & Zucker, H. (1966). Milchwissenschaft 21, 564.Google Scholar
Finney, D. J. (1964). Statistical Methods in Biological Assay 2nd ed.New York: Hafner Publishing Co.Google Scholar
Finot, P. A. (1973). In Proteins in Human Nutrition p. 501 [Porter, J. W. G. and Rolls, B. A., editors]. London: Academic Press.Google Scholar
Finot, P. A., Bricout, J., Viani, R., & Mauron, J. (1968). Experientia 24, 1097.CrossRefGoogle Scholar
Finot, P. A. & Mauron, J. (1969). Helv. chim. Acta 52, 1488.CrossRefGoogle Scholar
Finot, P. A. & Mauron, J. (1972). Helv. chim. Acta 55, 1153.CrossRefGoogle Scholar
Frangne, R. & Adrian, J. (1972). Annls Nutr. Aliment. 26, 107.Google Scholar
Hall, R. J., Trinder, N. & Givens, D. I. (1973). Analyst, Lond. 98, 673.CrossRefGoogle Scholar
Henry, K. M. & Kon, S. K. (1950). Biochim. biophys. Acta 5, 455.CrossRefGoogle Scholar
Henry, K. M., Kon, S. K., Lea, C. H. & White, J. D. C. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
Heyns, K., Heukeshoven, J. & Brose, K. H. (1968). Angew. Chem. int. Ed. Engl. 7, 628.CrossRefGoogle Scholar
Hodge, J. E. (1953). J. agric. Fd Chem. 1, 928.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1973). Proc. Nutr. Soc. 32, 55A.Google Scholar
Hurrell, R. F. & Carpenter, K. J. (1974). Proc. Nutr. Soc. 33, 13AGoogle Scholar
Kakade, M. L. & Liener, I. H. (1969). Analyt. Biochem. 27, 273.CrossRefGoogle Scholar
Klee, W. A. & Richards, F. M. (1957). J. biol. Chem. 229, 489.CrossRefGoogle Scholar
Lea, C. H. & Hannan, R. S. (1950). Biochim. biophys. Acta 4, 518.CrossRefGoogle Scholar
Matheson, N. A. (1968). J. Sci. Fd Agric. 19, 496.CrossRefGoogle Scholar
Mauron, J. (1972). In International Encyclopaedia of Food and Nutrition Vol. 11, p. 417 [Bigwood, E. J., editor]. Oxford: Pergamon Press.Google Scholar
Mauron, J. & Bujard, E. (1963). Proc. Int. Congr. Nutr. VI, Edinburgh p. 167.Google Scholar
Means, G. H. & Feeney, R. E. (1968). Biochemistry, Easton 7, 2192.CrossRefGoogle Scholar
Means, G. H. & Feeney, R. E. (1971). Chemical Modifications of Protein. San Francisco: Holden-Day.Google Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Milner, C. K. & Westgarth, D. R. (1973). J. Sci. Fd Agric. 24, 873.CrossRefGoogle Scholar
Moodie, I. M., Marshall, B. C. & Kieswetter, G. R. (1970). Rep. Fish. Ind. Res. Inst., Univ. Cape Town no. 24, p. 23.Google Scholar
Moodie, I. M. & Wessels, J. P. H. (1972). Rep. Fish. Ind. Res. Inst., Univ. Cape Town no. 26, p. 40.Google Scholar
Mottu, F. & Mauron, J. (1967). J. Sci. Fd Agric. 18, 57.CrossRefGoogle Scholar
Okuyama, T. & Satake, K. (1960). J. Biochem., Tokyo 47, 454.CrossRefGoogle Scholar
Ostrowski, H., Jones, A. S. & Cadenhead, A. (1970). J. Sci. Fd Agric. 21, 103.CrossRefGoogle Scholar
Ousterhout, L. E. & Wood, E. M. (1970). Poult. Sci. 49, 1423.Google Scholar
Pion, R. (1961). Annls. Biol. anim. Biochim. Biophys. 1, 236.CrossRefGoogle Scholar
Rao, S. R., Carter, F. L. & Frampton, V. L. (1963). Analyt. Chem. 35, 1927.CrossRefGoogle Scholar
Rao, M. N., Sreenivas, H., Swaminathan, H., Carpenter, K. J. & Morgan, C. B. (1963). J. Sci. Fd Agric. 14, 544.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). J. Sci. Fd Agric. 18, 274.CrossRefGoogle Scholar
Ross, I. & Krampitz, G. (1960). Z. Tierphysiol. Tierernähr. Futtermittelk. 15, 95.CrossRefGoogle Scholar
Sasano, Y., Yoshiwara, T. & Oki, T. (1968). Bull. Jap. Soc. scient. Fish. 34, 613.CrossRefGoogle Scholar
Schober, R. & Prinz, U., (1956). Milchwissenschaft 12, 466.Google Scholar
Shields, G. S., Hill, R. L. & Smith, E. L. (1959). J. biol. Chem. 234, 1747.CrossRefGoogle Scholar
Skurray, G. R. & Cumming, R. B. (1974). J. Sci. Fd. Agric. 25, 521.CrossRefGoogle Scholar
Smith, R. E. & Scott, H. M. (1965). Poult. Sci. 44, 408.CrossRefGoogle Scholar
Spackman, D. H., Stein, V. H. & Moore, S. (1958). Analyt. Chem. 30, 1185.CrossRefGoogle Scholar
Sulser, H. (1973). Lebensmittel-Wiss. Technol. 6, 66.Google Scholar
Thomas, M. C. (1972). A chemical method for the determination of available lysine. PhD Thesis, Texas A. & M. University, USA.Google Scholar
Valle-Riestra, J. & Barnes, R. H. (1970). J. Nutr. 100, 873.CrossRefGoogle Scholar
Varnish, S. A. (1971). Nutritional studies on heat-damaged protein. PhD Thesis, University of Cambridge.Google Scholar
Varnish, S. A. & Carpenter, K. J. (1970). Proc. Nutr. Soc. 29, 45A.Google Scholar
Varnish, S. A. & Carpenter, K. J. (1971). Proc. Nutr. Soc. 30, 70AGoogle Scholar
Waibel, P. E. & Carpenter, K. J. (1972). Br. J. Nutr. 27, 50A.CrossRefGoogle Scholar