Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T05:49:20.769Z Has data issue: false hasContentIssue false

J-shaped association between dietary copper intake and all-cause mortality: a prospective cohort study in Chinese adults

Published online by Cambridge University Press:  01 September 2022

Xiaoqin Gan
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Panpan He
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Chun Zhou
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Cheng Zu
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China Institute of Biomedicine, Anhui Medical University, Hefei, People’s Republic of China
Qiguo Meng
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China Institute of Biomedicine, Anhui Medical University, Hefei, People’s Republic of China
Mengyi Liu
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Yuanyuan Zhang
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Sisi Yang
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Yanjun Zhang
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Ziliang Ye
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Qimeng Wu
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
Rui Li
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China Institute of Biomedicine, Anhui Medical University, Hefei, People’s Republic of China
Chengzhang Liu*
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China Institute of Biomedicine, Anhui Medical University, Hefei, People’s Republic of China
Xianhui Qin*
Affiliation:
Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, People’s Republic of China
*
*Corresponding authors: Dr X. Qin, email pharmaqin@126.com; Dr C. Liu, email lczbruce@sina.com
*Corresponding authors: Dr X. Qin, email pharmaqin@126.com; Dr C. Liu, email lczbruce@sina.com

Abstract

The association between dietary Cu intake and mortality risk remains uncertain. We aimed to investigate the relationship of dietary Cu intake with all-cause mortality among Chinese adults. A total of 17 310 participants from the China Health and Nutrition Survey, a national ongoing open cohort of Chinese participants, were included in the analysis. Dietary intake was measured by three consecutive 24-h dietary recalls in combination with a weighing inventory over the same 3 d. The average intakes of the 3-d dietary macronutrients and micronutrients were calculated. The study outcome was all-cause mortality. During a median follow-up of 9·0 years, 1324 (7·6 %) participants died. After adjusting for sex, age, BMI, ever alcohol drinking, ever smoking, education levels, occupations, urban or rural residents, systolic blood pressure, diastolic blood pressure and the intakes of fat, protein and carbohydrate, the association between dietary Cu intake and all-cause mortality followed a J-shape (P for nonlinearity = 0·047). When dietary Cu intake was assessed as quartiles, compared with those in the first quartile (<1·60 mg/d), the adjusted hazard ratios for all-cause mortality were 0·87 (95 % CI (0·71, 1·07)), 0·98 (95 % CI (0·79, 1·21)) and 1·49 (95 % CI (1·19, 1·86)), respectively, in participants in the second (1·60–<1·83 mg/d), third (1·83–<2·09 mg/d) and fourth (≥2·09 mg/d) quartiles. A series of subgroup analyses and sensitivity analyses showed similar results. Overall, our findings emphasised the importance of maintaining optimal dietary Cu intake levels for prevention of premature death.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonham, M, O’Connor, JM, Hannigan, BM, et al. (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87, 393403.CrossRefGoogle ScholarPubMed
Uriu-Adams, JY & Keen, CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26, 268298.CrossRefGoogle ScholarPubMed
Cai, L, Koropatnick, J & Cherian, MG (1995) Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro . Chem Biol Interact 96, 143155.CrossRefGoogle Scholar
Cai, L, Tsiapalis, G & Cherian, MG (1998) Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts. Chem Biol Interact 115, 141151.CrossRefGoogle ScholarPubMed
He, P, Li, H, Liu, C, et al. (2022) U-shaped association between dietary copper intake and new-onset hypertension. Clin Nutr 41, 536542.CrossRefGoogle ScholarPubMed
Bates, CJ, Hamer, M & Mishra, GD (2011) Redox-modulatory vitamins and minerals that prospectively predict mortality in older British people: the national diet and nutrition survey of people aged 65 years and over. Br J Nutr 105, 123132.CrossRefGoogle ScholarPubMed
Chen, F, Du, M, Blumberg, JB, et al. (2019) Association among dietary supplement use, nutrient intake, and mortality among US adults: a cohort study. Ann Intern Med 170, 604613.CrossRefGoogle ScholarPubMed
Kałuza, J, Dołowa, J, Roszkowski, W, et al. (2005) Survival and habitual nutrient intake among elderly men. Rocz Panstw Zakl Hig 56, 361.Google ScholarPubMed
Mohammadifard, N, Humphries, KH, Gotay, C, et al. (2019) Trace minerals intake: risks and benefits for cardiovascular health. Crit Rev Food Sci Nutr 59, 13341346.CrossRefGoogle ScholarPubMed
Zabłocka-Słowińska, K, Prescha, A, Płaczkowska, S, et al. (2021) Serum and whole blood Cu and Zn status in predicting mortality in lung cancer patients. Nutrients 13, 60.CrossRefGoogle Scholar
Leone, N, Courbon, D, Ducimetiere, P, et al. (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308314.CrossRefGoogle ScholarPubMed
Malavolta, M, Giacconi, R, Piacenza, F, et al. (2010) Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 11, 309319.CrossRefGoogle ScholarPubMed
Grammer, TB, Kleber, ME, Silbernagel, G, et al. (2014) Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen risk and cardiovascular health study). Free Radic Res 48, 706715.CrossRefGoogle ScholarPubMed
Popkin, BM, Du, S, Zhai, F, et al. (2010) Cohort profile: the China health and nutrition survey – monitoring and understanding socio-economic and health change in China, 1989–2011. Int J Epidemiol 39, 14351440.CrossRefGoogle ScholarPubMed
Zhang, B, Zhai, FY, Du, SF, et al. (2014) The China health and nutrition survey, 1989–2011. Obes Rev 15, 27.CrossRefGoogle ScholarPubMed
Liu, M, Liu, C, Zhang, Z, et al. (2021) Quantity and variety of food groups consumption and the risk of diabetes in adults: a prospective cohort study. Clin Nutr 40, 57105717.CrossRefGoogle ScholarPubMed
He, P, Li, H, Liu, M, et al. (2021) U-shaped association between dietary zinc intake and new-onset diabetes: a nationwide cohort study in China. J Clin Endocrinol Metab 27, dgab636.Google Scholar
Zhou, C, Zhang, Z, Liu, M, et al. (2021) Dietary carbohydrate intake and new-onset diabetes: a nationwide cohort study in China. Metabolism 123, 154865.CrossRefGoogle ScholarPubMed
Li, Q, Liu, C, Zhang, S, et al. (2021) Dietary carbohydrate intake and new-onset hypertension: a nationwide cohort study in China. Hypertension 78, 422430.CrossRefGoogle ScholarPubMed
Zhang, Y, Liu, M, Zhou, C, et al. (2021) Inverse association between dietary vitamin A intake and new-onset hypertension. Clin Nutr 40, 28682875.CrossRefGoogle ScholarPubMed
Seidelmann, SB, Claggett, B, Cheng, S, et al. (2018) Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3, e419e428.CrossRefGoogle ScholarPubMed
Zhai, F, Guo, X, Popkin, BM, et al. (1996) Evaluation of the 24-h individual recall method in China. Food Nutr Bull 17, 15.CrossRefGoogle Scholar
Zhai, FY, Du, SF, Wang, ZH, et al. (2014) Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes Rev 15, 1626.CrossRefGoogle ScholarPubMed
Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.CrossRefGoogle ScholarPubMed
Bost, M, Houdart, S, Oberli, M, et al. (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35, 107115.CrossRefGoogle ScholarPubMed
Batis, C, Sotres-Alvarez, D, Gordon-Larsen, P, et al. (2014) Longitudinal analysis of dietary patterns in Chinese adults from 1991 to 2009. Br J Nutr 111, 14411451.CrossRefGoogle ScholarPubMed
Cui, Z, Zhou, H, Liu, K, et al. (2022) Dietary copper and selenium intakes and the risk of type 2 diabetes mellitus: findings from the China health and nutrition survey. Nutrients 14, 2055.CrossRefGoogle ScholarPubMed
Malesza, IJ, Malesza, M, Walkowiak, J, et al. (2021) High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells 10, 3164.CrossRefGoogle ScholarPubMed
Zhang, J, Cao, J, Zhang, H, et al. (2019) Plasma copper and the risk of first stroke in hypertensive patients: a nested case-control study. Am J Clin Nutr 110, 212220.CrossRefGoogle ScholarPubMed
Tapiero, H, Townsend, DM & Tew, KD (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57, 386398.CrossRefGoogle ScholarPubMed
Jomova, K & Valko, M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283, 6587.CrossRefGoogle ScholarPubMed
Bo, S, Durazzo, M, Gambino, R, et al. (2008) Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr 138, 305310.CrossRefGoogle ScholarPubMed
Sarkar, B (1995) Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11, 646649.Google ScholarPubMed
Gong, W, Liu, A, Yao, Y, et al. (2018) Nutrient supplement use among the Chinese population: a cross-sectional study of the 2010–2012 China nutrition and health surveillance. Nutrients 10, 1733.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gan et al. supplementary material

Gan et al. supplementary material

Download Gan et al. supplementary material(File)
File 2.7 MB