Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T10:04:02.893Z Has data issue: false hasContentIssue false

Iron availability from meat

Published online by Cambridge University Press:  26 April 2012

T. Hazell
Affiliation:
Food Science Laboratories, Department of Applied Biochemistry & Nutrition, University of Nottingham, Sutton Bonington, Loughborough, Leics. LE12 5RD
D. A. Ledward
Affiliation:
Food Science Laboratories, Department of Applied Biochemistry & Nutrition, University of Nottingham, Sutton Bonington, Loughborough, Leics. LE12 5RD
R. J. Neale
Affiliation:
Food Science Laboratories, Department of Applied Biochemistry & Nutrition, University of Nottingham, Sutton Bonington, Loughborough, Leics. LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The distribution of radioactive iron in 59Fe-labelled rat muscle extract was determined using ge filtration. This showed that most (approximately 70%) of the radioactivity was associated with the heamatin compounds; myoglobin and haemoglobin.

2. Raw beef and freeze-dried rat muscle were digested in vitro, under simulated physiological conditions, and after centrifugation the supernatants fractionated by gel filtration. The soluble products were haematin Fe complexes of molecular weight above 10 000 and non-haematin Fe compounds of molecular weight below 6000, the major products being the non-haematin Fe complexes. The soluble compounds were also separated by dialysis and, in rat muscle, it was found that the low-molecular-weight non-haematin compounds accounted for more than 80% of the total soluble iron.

3. In vivo absorption studies with rats showed the Fe in a digested muscle dialysate to be more readily absorbed than that from an aqueous muscle extract which itself was more readily absorbed than the Fe from whole blood.

4. It may not, therefore, be the haemoproteins per se which are responsible for the high availability of Fe in meat, but rather the nature of their degradation products, formed by digestion within the meat environment.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

REFERENCES

Callender, S. T., Mallett, B. J. & Smith, M. D. (1957). Br. J. Haemat. 3, 186.CrossRefGoogle Scholar
Conrad, M. E., Benjamin, B. I., Williams, H. L. & Foy, A. L. (1967). Gastroenterology 53, 5.CrossRefGoogle Scholar
Conrad, M. E., Cortell, S., Williams, H. L. & Foy, A. L. (1966). J. Lab. clin. Med. 68, 659.Google Scholar
Conrad, M. E., Weintraub, L. R., Sears, D. A. & Crosby, W. H. (1966). Am. J. Physiol. 211, 1123.CrossRefGoogle Scholar
Hallberg, L. & Solvell, L. (1967). Acta. Med. Scand. 181, 335.CrossRefGoogle Scholar
Heinrich, H. C., Gabbe, E. E. & Kugler, G. (1971). Eur. J. clin. Invest. 1, 321.CrossRefGoogle Scholar
Heinrich, H. C., Gabbe, E. E., Kugler, G. & Pfau, A. A. (1971). Klin. Wschr. 49, 819.CrossRefGoogle Scholar
Jacobs, A. (1976). Proc. Nutr. Soc. 35, 159.CrossRefGoogle Scholar
Jacobs, A. & Miles, P. M. (1969). Br. Med. J. 4, 778.CrossRefGoogle Scholar
Kaldor, I. (1957). Aust. Ann. Med. 6, 244.Google Scholar
Kroe, D., Kinney, T. D., Kaufman, N. & Klavins, J. V. (1962). Blood 21, 546.CrossRefGoogle Scholar
Layrisse, M. & Martinez-Torres, C. (1971). In Progress in Haematology VII, p. 137 [Brown, E. B. and Moore, C. V., editors]. New York: Grune and Stratton.Google Scholar
Layrisse, M., Martinez-Torres, C. & Roche, M. (1968). Am. J. clin. Nutr. 21, 1175.CrossRefGoogle Scholar
Lemberg, R. & Legge, J. W. (1969). Haematin Compounds and Bile Pigments. New York: Interscience.Google Scholar
Martinez-Torres, C., Leets, I., Renzi, M. & Layrisse, M. (1971). Am. J. clin. Nutr. 24, 531.CrossRefGoogle Scholar
Martinez-Torres, C. & Layrisse, M. (1971). Am. J. Clin. Nutr. 24, 531.CrossRefGoogle Scholar
Martinez-Torres, C. & Layrisse, M. (1974). J. Nutr. 104, 983.CrossRefGoogle Scholar
Moore, C. V. (1961). Harvey Lect. 55, 67.Google Scholar
Naish, R., Kimber, C. L. & Deller, D. J. (1973). Br. J. Haemat. 26, 459.CrossRefGoogle Scholar
Sanford, R. (1960). Nature, Lond. 185, 533.CrossRefGoogle Scholar
Terato, K., Fujita, T. & Yoshino, Y. (1973). Dig. Dis. 18, 121.CrossRefGoogle Scholar
Terato, K., Hiramatsu, Y. & Yoshino, Y. (1973). Dig. Dis. 18, 129.CrossRefGoogle Scholar
Torrance, J. D., Charlton, R. W., Schmaman, A., Lynch, S. R. & Bothwell, T. H. (1968). J. clin. Path. 21, 495.CrossRefGoogle Scholar
Turnbull, A., Cleton, F. & Finch, C. A. (1962). J. clin. Invest. 41, 1897.CrossRefGoogle Scholar
Van Campen, D. (1972). J. Nutr. 102, 165.CrossRefGoogle Scholar
Van Campen, D. (1973). J. Nutr. 103, 139.CrossRefGoogle Scholar
Walsh, R. J., Kaldor, I., Brading, I. & George, E. P. (1955). Aust. Ann. Med. 4, 272.Google Scholar
Wheby, M. S., Suttle, G. E. & Ford, K. T. (1970). Gastroenterology 58, 647.CrossRefGoogle Scholar