Hostname: page-component-68945f75b7-z7ghp Total loading time: 0 Render date: 2024-08-05T19:24:37.793Z Has data issue: false hasContentIssue false

Impact of total parenteral nutrition v. exclusive enteral nutrition on postoperative adverse outcomes in patients with penetrating Crohn’s disease undergoing surgical resection: a retrospective cohort study

Published online by Cambridge University Press:  04 June 2024

Zhenya Sun
Affiliation:
Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People’s Republic of China
Lei Cao
Affiliation:
Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People’s Republic of China
Yusheng Chen
Affiliation:
Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People’s Republic of China
Tianrun Song
Affiliation:
Department of General Surgery, Jinling Clinical School of Medicine (Eastern Theater General Hospital), Nanjing Medical University, Nanjing 210002, People’s Republic of China
Zhen Guo
Affiliation:
Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People’s Republic of China
Weiming Zhu
Affiliation:
IBD Therapeutic Center, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
Yi Li*
Affiliation:
Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People’s Republic of China
*
*Corresponding author: Dr Yi Li, email liyi.jlh@hotmail.com

Abstract

Achieving optimal nutritional status in patients with penetrating Crohn’s disease is crucial in preparing for surgical resection. However, there is a dearth of literature comparing the efficacy of total parenteral nutrition (TPN) v. exclusive enteral nutrition (EEN) in optimising postoperative outcomes. Hence, we conducted a case-matched study to assess the impact of preoperative EEN v. TPN on the incidence of postoperative adverse outcomes, encompassing overall postoperative morbidity and stoma formation, among penetrating Crohn’s disease patients undergoing bowel surgery. From 1 December 2012 to 1 December 2021, a retrospective study was conducted at a tertiary centre to enrol consecutive patients with penetrating Crohn’s disease who underwent surgical resection. Propensity score matching was utilised to compare the incidence of postoperative adverse outcomes. Furthermore, univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with adverse outcomes. The study included 510 patients meeting the criteria. Among them, 101 patients in the TPN group showed significant improvements in laboratory indicators at the time of surgery compared with pre-optimisation levels. After matching, TPN increased the occurrence of postoperative adverse outcomes (92·2 % v. 64·1 %, P = 0·001) when compared with the EEN group. In the multivariate analysis, TPN showed a significantly higher OR for adverse outcomes than EEN (OR = 4·241; 95 % CI 1·567–11·478; P = 0·004). The study revealed that penetrating Crohn’s disease patients who were able to fulfil their nutritional requirements through EEN exhibited superior nutritional and surgical outcomes in comparison with those who received TPN.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Cushing, K & Higgins, PDR (2021) Management of Crohn disease: a review. JAMA 325, 6980.CrossRefGoogle ScholarPubMed
Hirten, RP, Shah, S, Sachar, DB, et al. (2018) The management of intestinal penetrating Crohn’s disease. Inflamm Bowel Dis 24, 752765.CrossRefGoogle ScholarPubMed
Kanazawa, A, Yamana, T, Okamoto, K, et al. (2012) Risk factors for postoperative intra-abdominal septic complications after bowel resection in patients with Crohn’s disease. Dis Colon Rectum 55, 957962.CrossRefGoogle ScholarPubMed
Huang, W, Tang, Y, Nong, L, et al. (2015) Risk factors for postoperative intra-abdominal septic complications after surgery in Crohn’s disease: a meta-analysis of observational studies. J Crohn’s Colitis 9, 293301.CrossRefGoogle ScholarPubMed
Papa, A, Lopetuso, LR, Minordi, LM, et al. (2020) A modern multidisciplinary approach to the treatment of enterocutaneous fistulas in Crohn’s disease patients. Expert Rev Gastroenterol Hepatol 14, 857865.CrossRefGoogle Scholar
Wall, CL, Day, AS & Gearry, RB (2013) Use of exclusive enteral nutrition in adults with Crohn’s disease: a review. World J Gastroenterol 19, 76527660.CrossRefGoogle ScholarPubMed
Akobeng, AK, Zhang, D, Gordon, M, et al. (2018) Enteral nutrition for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 8, CD005984.Google ScholarPubMed
Pigneur, B, Lepage, P, Mondot, S, et al. (2019) Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy-a randomised prospective clinical trial in children with Crohn’s disease. J Crohn’s Colitis 13, 846855.CrossRefGoogle ScholarPubMed
Bischoff, SC, Bager, P, Escher, J, et al. (2023) ESPEN guideline on clinical nutrition in inflammatory bowel disease. Clin Nutr (Edinburgh, Scotland) 42, 352379.CrossRefGoogle ScholarPubMed
Wang, H, Zuo, L, Zhao, J, et al. (2016) Impact of preoperative exclusive enteral nutrition on postoperative complications and recurrence after bowel resection in patients with active Crohn’s disease. World J Surg 40, 19932000.CrossRefGoogle ScholarPubMed
Meade, S, Patel, KV, Luber, RP, et al. (2022) A retrospective cohort study: pre-operative oral enteral nutritional optimisation for Crohn’s disease in a UK tertiary IBD centre. Aliment Pharmacol Ther 56, 646663.CrossRefGoogle Scholar
Peyser, DK, Carmichael, H, Dean, A, et al. (2022) Early versus delayed ileocolic resection for complicated Crohn’s disease: is “cooling off” necessary?. Surg Endosc 36, 42904298.CrossRefGoogle ScholarPubMed
Braga, M, Ljungqvist, O, Soeters, P, et al. (2009) ESPEN guidelines on parenteral nutrition: surgery. Clin Nutr (Edinburgh, Scotland) 28, 378386.CrossRefGoogle ScholarPubMed
Ayoub, F, Kamel, AY, Ouni, A, et al. (2019) Pre-operative total parenteral nutrition improves post-operative outcomes in a subset of Crohn’s disease patients undergoing major abdominal surgery. Gastroenterol Rep 7, 107114.CrossRefGoogle Scholar
Heerasing, N, Thompson, B, Hendy, P, et al. (2017) Exclusive enteral nutrition provides an effective bridge to safer interval elective surgery for adults with Crohn’s disease. Aliment Pharmacol Ther 45, 660669.CrossRefGoogle ScholarPubMed
ASPEN Board of Directors and the Clinical Guidelines Task Force (2002) Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenteral Enteral Nutr 26, 1SA138SA.Google Scholar
Rychter, J & Clavé, P (2013) Intestinal inflammation in postoperative ileus: pathogenesis and therapeutic targets. Gut 62, 15341535.CrossRefGoogle ScholarPubMed
Dindo, D, Demartines, N & Clavien, P-A (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240, 205213.CrossRefGoogle Scholar
Syed, A, Cross, RK & Flasar, MH (2013) Anti-tumor necrosis factor therapy is associated with infections after abdominal surgery in Crohn’s disease patients. Am J Gastroenterology 108, 583593.CrossRefGoogle ScholarPubMed
Jabłońska, B & Mrowiec, S (2023) Nutritional status and its detection in patients with inflammatory bowel diseases. Nutrients 15, 1991.CrossRefGoogle ScholarPubMed
Brajcich, BC, Stigall, K, Walsh, DS, et al. (2022) Preoperative nutritional optimization of the oncology patient: a scoping review. J Am Coll Surg 234, 384394.CrossRefGoogle ScholarPubMed
Wobith, M & Weimann, A (2021) Oral nutritional supplements and enteral nutrition in patients with gastrointestinal surgery. Nutrients 13, 2655.CrossRefGoogle ScholarPubMed
Boullata, JI, Carrera, AL, Harvey, L, et al. (2017) ASPEN safe practices for enteral nutrition therapy [formula: see text]. JPEN J Parenteral Enteral Nutr 41, 15103.CrossRefGoogle ScholarPubMed
Zittan, E, Gralnek, IM, Hatoum, OA, et al. (2020) Preoperative exclusive total parental nutrition is associated with clinical and laboratory remission in severe active Crohn’s disease-a pilot study. Nutrients 12, 1244.CrossRefGoogle ScholarPubMed
Morlion, BJ, Stehle, P, Wachtler, P, et al. (1998) Total parenteral nutrition with glutamine dipeptide after major abdominal surgery: a randomized, double-blind, controlled study. Ann Surg 227, 302308.CrossRefGoogle ScholarPubMed
Evans, JP, Steinhart, AH, Cohen, Z, et al. (2003) Home total parenteral nutrition: an alternative to early surgery for complicated inflammatory bowel disease. J Gastrointestinal Surg: Official Journal of the Society for Surgery of the Alimentary Tract 7, 562566.CrossRefGoogle ScholarPubMed
Turkot, M & Sobocki, J (2017) Results of home parenteral nutrition in patients with severe inflammatory bowel disease - an alternative for surgery of malnourished patients. Pol Przegl Chir 89, 2328.CrossRefGoogle ScholarPubMed
Fell, JM, Paintin, M, Arnaud-Battandier, F, et al. (2000) Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease. Aliment Pharmacol Ther 14, 281289.CrossRefGoogle Scholar
Berntson, L, Hedlund-Treutiger, I & Alving, K (2016) Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol 34, 941945.Google ScholarPubMed
MacLellan, A, Moore-Connors, J, Grant, S, et al. (2017) The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients 9, 447.CrossRefGoogle ScholarPubMed
Yu, Y, Chen, K-C & Chen, J (2019) Exclusive enteral nutrition versus corticosteroids for treatment of pediatric Crohn’s disease: a meta-analysis. World J Pediatr: WJP 15, 2636.CrossRefGoogle ScholarPubMed
Braunschweig, CL, Levy, P, Sheean, PM, et al. (2001) Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr 74, 534542.CrossRefGoogle ScholarPubMed
Elke, G, van Zanten, ARH, Lemieux, M, et al. (2016) Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 20, 117.CrossRefGoogle ScholarPubMed
Mazaki, T & Ebisawa, K (2008) Enteral versus parenteral nutrition after gastrointestinal surgery: a systematic review and meta-analysis of randomized controlled trials in the English literature. J Gastrointestinal Surg: Official Journal of the Society for Surgery of the Alimentary Tract 12, 739755.CrossRefGoogle ScholarPubMed
Zhao, X-F, Wu, N, Zhao, G-Q, et al. (2016) Enteral nutrition versus parenteral nutrition after major abdominal surgery in patients with gastrointestinal cancer: a systematic review and meta-analysis. J Invest Med: the Official Publication of the American Federation for Clinical Research 64, 10611074.CrossRefGoogle ScholarPubMed
Runde, J, Veseli, I, Fogarty, EC, et al. (2023) Transient suppression of bacterial populations associated with gut health is critical in success of exclusive enteral nutrition for children with Crohn’s disease. J Crohn’s Colitis 17, 11031113.CrossRefGoogle ScholarPubMed
Melton, SL, Taylor, KM, Gibson, PR, et al. (2023) Review article: mechanisms underlying the effectiveness of exclusive enteral nutrition in Crohn’s disease. Aliment Pharmacol Ther 57, 932947.CrossRefGoogle ScholarPubMed
Ashton, JJ, Gavin, J & Beattie, RM (2019) Exclusive enteral nutrition in Crohn’s disease: evidence and practicalities. Clin Nutr (Edinburgh, Scotland) 38, 8089.CrossRefGoogle ScholarPubMed
Weimann, A, Braga, M, Carli, F, et al. (2021) ESPEN practical guideline: clinical nutrition in surgery. Clin Nutr (Edinburgh, Scotland) 40, 47454761.CrossRefGoogle ScholarPubMed
Weimann, A, Braga, M, Carli, F, et al. (2017) ESPEN guideline: clinical nutrition in surgery. Clin Nutr (Edinburgh, Scotland) 36, 623650.CrossRefGoogle ScholarPubMed
O’Hanlon, D, Sandall, A, Darakhshan, A, et al. (2019) P366 A service evaluation of pre-operative nutritional optimisation in patients with Crohn’s disease using exclusive enteral nutrition with or without supplementary parenteral nutrition. J Crohn’s Colitis 13, S288S288.CrossRefGoogle Scholar
Supplementary material: File

Sun et al. supplementary material

Sun et al. supplementary material
Download Sun et al. supplementary material(File)
File 378.7 KB