Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T01:55:43.802Z Has data issue: false hasContentIssue false

The fate of water in the rumen

1. A critical appraisal of the use of soluble markers

Published online by Cambridge University Press:  09 March 2007

A. C. I. Warner
Affiliation:
CSIRO, Division of Animal Physiology, Ian Clunies Ross Animal Research Laboratory, Prospect, NSW, Australia
B. D. Stacy
Affiliation:
CSIRO, Division of Animal Physiology, Ian Clunies Ross Animal Research Laboratory, Prospect, NSW, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A mathematical treatment is given of the marker technique for studying water balances in the rumen. The treatment is extended to cover non-steady-state conditions and emphasis is placed on the underlying assumptions and practical limitations of the technique.

2. The 51Cr complex of ethylenediamine tetra-acetic acid (51Cr EDTA) was used as a marker in the rumen of sheep.

3. The 51Cr EDTA entered 95–98% of the water in the rumen. Mixing in the rumen, though adequate, was usually not quite complete even 1·5 h after injection of the dose. The techniques of injecting the dose and of withdrawing the sample were found to be important; some techniques often led to poor mixing.

4. Provided that the time of injection of the dose was suitably selected, reliable estimates of the volume of water in the rumen could readily be made, but reliable estimates of flow rates needed stringent attention to details of technique.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Bryant, A. M. (1964). N. Z. Jl agric. Res.Google Scholar
Denton, D. A. (1957). Nature, Lond. 179, 341.CrossRefGoogle Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.CrossRefGoogle Scholar
Hecker, J. F., Budtz-Olsen, O. E. & Ostwald, M. (1964). Aust. J. agric. Res. 15, 961.CrossRefGoogle Scholar
Hogan, J. P. (1964). Aust. J. agric. Res. 15, 384.CrossRefGoogle Scholar
Hydén, S. (1961). K. LantbrHögsk. Annlr 27, 51.Google Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 142.CrossRefGoogle Scholar
Purser, D. B. & Moir, R. J. (1966). J. Anim. Sci. 25, 509.CrossRefGoogle Scholar
Reid, C. S. W. (1965). Proc. N.Z. Soc. Anim. Prod. 25, 65.Google Scholar
Reid, C. S. W. & Cornwall, J. B. (1959). Proc. N.Z. Soc. Anim. Prod. 19, 23.Google Scholar
Sperber, I., Hydén, S. & Ekman, J. (1953). K. LantbrHögsk. Annlr 20, 337.Google Scholar
Stacy, B. D. & Thorburn, G. D. (1966). Science, N. Y. 152, 1076.CrossRefGoogle Scholar
Stacy, B. D. & Warner, A. C. I. (1966). Q. Jl exp. Physiol. 51, 79.CrossRefGoogle Scholar
Ternouth, J. H. (1967). Res. vet. Sci. 8, 283.CrossRefGoogle Scholar
Till, A. R. & Downes, A. M. (1965). Br. J. Nutr. 19, 435.CrossRefGoogle Scholar
Tulloh, N. M., Hughes, J. W. & Newth, R. P. (1965). N.Z. Jl agric. Res. 8, 636.CrossRefGoogle Scholar
Ulyatt, M. J. (1964). N.Z. Jl agric. Res. 7, 774.CrossRefGoogle Scholar
Warner, A. C. I. (1966). J. gen. Microbiol. 45, 213.CrossRefGoogle Scholar
Warner, A. C. I. & Stacy, B. D. (1965). Q. Jl exp. Physiol. 50, 169.CrossRefGoogle Scholar
Warner, A. C. I. & Stacy, B. D. (1968). Br. J. Nutr. 22, 389.CrossRefGoogle Scholar