Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T13:27:21.122Z Has data issue: false hasContentIssue false

Energy metabolism and body composition of young pigs given low-protein diets

Published online by Cambridge University Press:  09 March 2007

K. J. McCracken
Affiliation:
Agricultural and Food Chemistry Research Division, Department of Agriculture, Northern Ireland The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX
A. McAllister
Affiliation:
Agricultural and Food Chemistry Research Division, Department of Agriculture, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The energy metabolism of young pigs offered low-protein diets to appetite or a normal starter (diet 1, 225 g crude protein (nitrogen x 6·25; CP)/kg dry matter (DM)) to maintain zero energy balance was studied using indirect calorimetry and slaughter. The treatments were: T1, diet 1; T2, 46 g CP/kg DM; T3, 21 g CP/kg DM; T4, 17 g CP/kg DM; T5, 21 g CP/kg DM and no supplemental thiamin.

2. Daily heat production (kJ/d per kg body-weight (W)0·75) declined on all treatments from a pre-experimental value of 613. The greatest decline was observed in T1 pigs where the final value was 375.

3. There was a progressive reduction in energy intake from 5·4 MJ/d for T2 pigs to 3·0 MJ/d for T4 and T5 pigs (P < 0·001). The mean intake of T1 pigs was 2·3 MJ/d.

4. There were highly significant treatment differences (P < 0·001) in gain of live-weight and in the gain of carcass DM, CP, fat and energy.

5. There were marked treatment effects on body composition. T1 pigs showed a decrease in the proportion of carcass fat and an increase in the proportion of carcass CP during the experiment while the other four treatments caused large increases (P < 0·001) in carcass DM and fat content and no change in CP content. These changes resulted in large differences in the energy content of the gain, the mean values (MJ/kg) being 0·6, 35·5 and 88 for T1, T2 and T3 pigs respectively. T4 and T5 caused energy gain coupled with weight loss.

6. A linear regression of energy retention (ER; MJ/d per kg W0·75) on metabolizable energy (ME) intake yielded the equation

ER = 0·78 ME-0·365, r0·96.

7. These results indicate that heat production declines when the growth rate of young pigs is reduced either by restriction of energy or of protein intake. They do not support the suggestion that low-protein diets give rise to increased ‘diet-induced’ thermogenesis.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Black, A., Maddy, K. H. & Swift, R. W. (1955). Journal of Nutrition 42, 415422.CrossRefGoogle Scholar
Breirem, K. & Homb, T. (1972). Handbuch der Tierernahrung, Vol. 2, pp. 547584. [Lenkeit, W., Breirem, K. and Craseman, E., editors]. Hamburg: Paul Parey.Google Scholar
Burlacu, G., Baia, G., Ionila, D., Moisa, D., Tascenco, V., Visan, I. & Stoica, I. (1973). Journal of Agricultural Science, Cambridge 81, 295302.CrossRefGoogle Scholar
Close, W. H. & Stanier, M. W. (1980). European Association for Animal Production Publ. no. 26, 399402.Google Scholar
Dunkin, A. C. & Campbell, R. G. (1982). European Association for Animal Production Publ. no. 29, 198201.Google Scholar
Forbes, E. B., Swift, R. W., Black, A. & Kahlenberg, O. J. (1935). Journal of Nutrition 10, 461479.CrossRefGoogle Scholar
Fuller, M. F. (1983). Journal of Nutrition 113, 1520.CrossRefGoogle Scholar
Gray, R. & McCracken, K. J. (1980). European Association for Animal Production Publ. no. 26, 163167.Google Scholar
Gurr, M. I., Mawson, R., Rothwell, N. J. & Stock, M. J. (1980). Journal of Nutrition 110, 532542.CrossRefGoogle Scholar
Hamilton, T. S. (1939 a). Journal of Nutrition 17, 565582.CrossRefGoogle Scholar
Hamilton, T. S. (1939 b). Journal of Nutrition 17, 583599.CrossRefGoogle Scholar
Heineman, W. W., Ensminger, M. E., Cunha, T. J. & McCullough, E. L. (1946). Journal of Nutrition 31, 107125.CrossRefGoogle Scholar
Hogan, A. G. & Pilcher, R. W. (1933). Missouri Agricultural Experimental Station Research Bulletin no. 195.Google Scholar
Jordan, J. W. (1971). Agricultural Progress 46, 925.Google Scholar
Kielanowski, J. (1965). European Association for Animal Production Publ. no. 11, 1320.Google Scholar
Kirschgessner, M. & Muller, H. L. (1974). Archiv fur Tierenahrung 24, 215225.CrossRefGoogle Scholar
Lowrey, R. S., Pond, W. G., Loosli, J. K. & Barnes, R. H. (1963). Journal of Animal Science 22, 109114.CrossRefGoogle Scholar
Lunn, R. G. & Austin, S. (1983). British Journal of Nutrition 49, 916.CrossRefGoogle Scholar
McCance, R. A. & Mount, L. E. (1960). British Journal of Nutrition 14, 509518.CrossRefGoogle Scholar
McCracken, K. J. (1968). Energy metabolism of young rats subjected to a deficiency of calories or of protein. PhD thesis, University of Cambridge.Google Scholar
McCracken, K. J. (1975). British Journal of Nutrition 33, 277289.CrossRefGoogle Scholar
McCracken, K. J. (1983). Proceedings of the Nutrition Society 42, 4A.Google Scholar
McCracken, K. J. & Caldwell, B. J. (1980). European Association for Animal Production Publ no. 26, 445448.Google Scholar
McCracken, K. J., Eddie, S. M. & Stevenson, W. G. (1980). British Journal of Nutrition 43, 305320.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1962). Journal of Nutrition 78, 255262.CrossRefGoogle Scholar
Miller, E. R., Schmidt, D. A., Hoefer, J. A. & Luecke, R. W. (1955). Journal of Nutrition 56, 423430.CrossRefGoogle Scholar
Webster, A. J. F. (1981). Proceedings of the Nutrition Society 40, 121128.CrossRefGoogle Scholar