Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T13:16:25.287Z Has data issue: false hasContentIssue false

The effect of the amount and type of dietary fat on milk fat secretion in the cow

Published online by Cambridge University Press:  09 March 2007

J. A. F. Rook
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
A. J. Hall
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two experiments are described in which the effects of dietary fat on the synthesis of milk fat in the dairy cow have been investigated. In the first experiment a change-over design was used with two cows to study the effect of removing a mixed-oil supplement to a basal diet low in fat on the concentration and composition of plasma lipids and on the yield and composition of milk fat.

2. Reducing the dietary fat intake from about 430 to 170 g/day caused falls in the concentrations in plasma of phospholipid and of free and esterified cholesterol and, in one cow, also of triglyceride. The changes in composition and concentration of the fatty acids in the plasma triglyceride fraction also reflected changes in dietary intake of fatty acids. No effect of dietary fat intake on the total synthesis of milk fat was observed, but the composition of the milk fat reflected that of the dietary fat, and the yields of lauric, myristic, stearic and oleic acids were decreased in association with a decreased dietary intake of these acids.

3. In the second experiment the effect of supplementing a basal diet low in fat with either coconut, red palm or groundnut oil on the composition and yield of milk fat was studied in four cows using a 4 x 4 Latin square design balanced with respect to residual effects.

4. With each oil, increasing the dietary fat intake from about 100 to 400 g/day significantly increased the total yield of milk fat. Also, coconut and red palm oils significantly increased the fat content of milk, and groundnut oil the yield of milk.

5. With the exception of linoleic and palmitic acids, the increased dietary intake of the major fatty acids characteristic of the various oil supplements led to increased yields of these acids in the milk.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Annison, E. F. (1960). Aust. J. agric. Res. II, 58.CrossRefGoogle Scholar
Barry, J. M. (1964). Biol. Rev. 39, 194.CrossRefGoogle Scholar
Barry, J. M., Bartley, W., Linzell, J. L. & Robinson, D. S. (1963). Biochem. J. 89, 6.CrossRefGoogle Scholar
Bender, R. C. & Maynard, L. A. (1932). J. Dairy Sci. 15, 242.CrossRefGoogle Scholar
Bohman, V. R. & Lesperance, A. L. (1962). J. Anim. Sci. 21, 658.CrossRefGoogle Scholar
Bohman, V. R., Wade, M. A. & Torell, C. (1959). J. Anim. Sci. 18, 567.CrossRefGoogle Scholar
Bohman, V. R., Wade, M. A. & Torell, C. (1962). J. Anim. Sci. 21, 241.CrossRefGoogle Scholar
British Standards Institution (1955). British Standard 696: Part I, p. 7. London: British Standards Institution.Google Scholar
Brown, J. B. & Sutton, T. S. (1931). J. Dairy Sci. 14, 125.CrossRefGoogle Scholar
Brown, W. H., Stull, J. W. & Stott, G. H. (1962). J. Dairy Sci. 45, 191.CrossRefGoogle Scholar
deMan, J. M. (1964). J. Dairy Sci. 47, 546.CrossRefGoogle Scholar
Farquhar, J. W., Insull, W. Jr, Rosen, P., Stoffel, W. & Ahrens, E. H. Jr (1959). Nutr. Rev. 17, Suppl.Google Scholar
Gamer, F. H. & Sanders, H. G. (1938). J. agric. Sci., Camb. 28, 541.Google Scholar
Garton, G. A. (1960). Nutr. Abstr. Rev. 30, 1.Google Scholar
Garton, G. A. (1963). J. Lipid Res. 4, 237.CrossRefGoogle Scholar
Garton, G. A. (1965). In Physiology of Digestion in the Ruminant, 1964, p. 390. [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGillard, A. D., editors.] Washington: Butterworths.Google Scholar
Glascock, R. F., Duncornbe, W. G. & Reinius, L. R. (1956). Biochem. J, 62, 535.CrossRefGoogle Scholar
Glascock, R. F., McWeeny, D. J. & Smith, R. W. (1957). Proc. int. Conf. Radioisotopes scient. Res. I Paris, Vol. 3, P. 146.Google Scholar
Glascock, R. F., Welch, V. A., Bishop, C. , C., Davies, T., Wright, E. W. & Noble, R. C. (1966). Biochem. J. 98, 149.CrossRefGoogle Scholar
Hartmann, P. E., Harris, J. G. & Lascelles, A. K. (1966). Aust. J. biol. Sci. 19, 635.CrossRefGoogle Scholar
Hartmann, P. E. & Lascelles, A. K. (1964). Aust. J. biol. Sci. 17, 935.CrossRefGoogle Scholar
Hilditch, T.P. & Sleightholme, J. J. (1930). Biochrn. J. 24, 1098.CrossRefGoogle Scholar
Holland, E. B., Garvey, M. E., Pierce, H. B., Messer, A. C., Archibald, J. G. & Dunbar, C. O. (1923). J. agric. Res. 24, 365.Google Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Biochem. J. 66, 12P.Google Scholar
Leat, W.M. F. & Gillman, T. (1964). In Metabolism and Physiological Significance of Lipids, 1963, p. 257. [Dawson, R. M. C. and Rhodes, D. N., editors.] London: John Wiley and Sons Ltd.Google Scholar
McCay, C. M. & Maynard, L. A. (1935). J. biol. Chem. 109, 29.CrossRefGoogle Scholar
McDowell, F. H., Reid, C.S. W. & Patchell, M. R. (1957). N.Z. Jl Sci. Technol 38A, 1054.Google Scholar
Maynard, L. A. & McCay, C. M. (19291930). J. Nutr. 2, 67.CrossRefGoogle Scholar
Maynard, L. A. & McCay, C. M. (1932). Bull. Cornell agric. Exp. Stn no.543.Google Scholar
Maynard, L. A., McCay, C. M. & Madsen, L. L. (1936). J. Dairy Sci. 19, 49.CrossRefGoogle Scholar
Mohammed, K., Brown, W. H., Riley, P. W. & Stull, J. W. (1964). J. Dairy Sci. 47, 1208.CrossRefGoogle Scholar
Moore, L. A., Hoffman, G. T. & Berry, M. H. (1945). J. Dairy Sci. 28, 161.CrossRefGoogle Scholar
Parry, R. M. Jr, Sampugna, J. & Jensen, R. G. (1964).J. Dairy Sci. 47,37.CrossRefGoogle Scholar
Petersen, W.E. (1932). J. Dairy Sci. 15, 283.CrossRefGoogle Scholar
Reid, R. L. (1960). Analyst, Lond. 85, 265.CrossRefGoogle Scholar
Rook, J. A. F. (1961). Dairy Sci. Abstr. 23, 251.Google Scholar
Scarishrick, R. (1952). Biochem. J. 50, xxxiv.Google Scholar
Shaw, J. C. & Ensor, W. L. (1959).J. Dairy Sci. 42, 1238.CrossRefGoogle Scholar
Storry, J. E. & Millard, D. (1965).J. Sci. Fd Agric. 16,417.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1964). Biochem. J. 91, 27c.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1965). Biochem. J. 96, 210.CrossRefGoogle Scholar
Stull, J. W., Harland, F. G. & Davis, R. N. (1957).J. Dairy Sci. 40, 1238.CrossRefGoogle Scholar
Sutton, J. D. (1965).Rep. Prog. appl. Chem., 1964, 49, 239.Google Scholar
Tove, S. B. & Mochrie, R. D. (1963).J. Dairy Sci. 46 686.CrossRefGoogle Scholar
Van Soest, P. J., (1963).J. Dairy Sci. 46, 204.CrossRefGoogle Scholar
Williams, H. H. & Maynard, L. A. (1934).J. Dairy Sci. 17, 223.CrossRefGoogle Scholar