Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T12:15:27.289Z Has data issue: false hasContentIssue false

The effect of partially replacing urea nitrogen with protein N on N capture in the rumen of sheep fed a purified diet

Published online by Cambridge University Press:  24 July 2007

D. Ben-Ghedalia
Affiliation:
Department of Agricultural Biochemistry, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU
N. P. McMeniman
Affiliation:
Department of Agricultural Biochemistry, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU
D. G. Armstrong
Affiliation:
Department of Agricultural Biochemistry, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The influence of replacing 10 % of the urea nitrogen in a purified diet with casein, maize gluten or white fish meal on the efficiency of conversion of dietary-N into microbial N was examined using sheep equipped with rumen fistulas and duodenal re-entrant cannulas.

2. Total nitrogen (TN), non-ammonia nitrogen (NAN) and amino acid nitrogen (AAN) flowing to the proximal duodenum were significantly higher (P < 0.05) when maize gluten was added to the diet, and this appeared to be due to an increased efficiency of microbial protein production.

3. Pepsin secretion was not significantly different between treatments and the daily amount of pepsin N flowing to the proximal duodenum was very small (40–53 mg). The peak of pepsin activity in duodenal digesta was reached 6–8 h after feeding.

4. The possible practical implications of the results are discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Allison, M. J. (1969). J. Anim. Sci. 29, 797.CrossRefGoogle Scholar
Anson, M. L. (1938). J. Gen. Physiol. 22, 79.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Pfeffer, E. & Armstrong, D. G. (1971). Br. J. Nutr. 26, 123.CrossRefGoogle Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968). J. Dairy Sci. 51, 1698.CrossRefGoogle Scholar
Binnerts, W. T., van't Klooster, A. Th. & Frens, A. M. (1968). Vet. Rec. 82, 470.Google Scholar
Brown, G. F., Armstrong, D. G. & MacRae, J. C. (1968). Br. Vet. J. 124, 78.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1962). J. Bacteriol. 84, 605.CrossRefGoogle Scholar
Clarke, E. H. W., Ellinger, B. M. & Phillipson, A. T. (1966). Proc. R. Soc. B 166, 63.Google Scholar
Clifford, A. J., Bourdette, J. R. & Tillman, A. D. (1967). J. Anim. Sci. 26, 917.CrossRefGoogle Scholar
Coelho, da, Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 63.Google Scholar
Harbers, L. H., Oltjen, R. R. & Tillman, A. D. (1961). J. Anim. Sci. 20, 880.CrossRefGoogle Scholar
Harrop, C. J. F. (1974). J. agric. Sci., Camb. 83, 249.CrossRefGoogle Scholar
Hume, I. D. (1970). Aust. J. agric. Res. 21, 305.CrossRefGoogle Scholar
Hunner, M. C., Hudson, F. B. & Fletcher, T. L. (1969). Proc. Soc. exp. Biol. Med. 130, 1246.CrossRefGoogle Scholar
McDonald, I. W. (1954). Biochem. J. 56, 120.CrossRefGoogle Scholar
Oltjen, R. R. (1969). J. Anim. Sci. 28, 673.CrossRefGoogle Scholar
Oltjen, R. R., Sirney, R. J. & Tillman, A. D. (1962). J. Anim. Sci. 21, 277.CrossRefGoogle Scholar
Pittman, K. A. & Bryant, M. P. (1964). J. Bacteriol. 88, 401.CrossRefGoogle Scholar
Purser, D. B. (1970). J. Anim. Sci. 30, 988.CrossRefGoogle Scholar
Purser, D. B. & Beuchler, S. M. (1966). J. Dairy Sci. 49, 81.CrossRefGoogle Scholar
Ramirez, A. (1972). Rev. Cubana Ciene. Agric. 6, 195.Google Scholar
Weller, R. A. (1957). Aust. J. biol. Sci. 10, 384.CrossRefGoogle Scholar
Williams, P. O. & Dinusson, W. E. (1973). J. Anim. Sci. 36, 151.CrossRefGoogle Scholar
Wright, D. E. (1967). Appl. Microbiol. 15, 547.CrossRefGoogle Scholar