Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T04:20:42.705Z Has data issue: false hasContentIssue false

The effect of nutrition and androgens on the composition of bovine blood plasma and seminal plasma at puberty

Published online by Cambridge University Press:  09 March 2007

S. Baronos
Affiliation:
ARC Unit of Reproductive Physiology and Biochemistry, University of Cambridge
T. Mann
Affiliation:
ARC Unit of Reproductive Physiology and Biochemistry, University of Cambridge
L. E. A. Rowson
Affiliation:
ARC Unit of Reproductive Physiology and Biochemistry, University of Cambridge
J. D. Skinner
Affiliation:
ARC Unit of Reproductive Physiology and Biochemistry, University of Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Experiments on three pairs of male identical twin calves have shown that underfeeding at 2.5–6 months of age, i.e. during the critical stage of sexual maturation, considerably delayed the process of puberty, as regards testicular androgen production as well as secretion of fructose and citric acid by the seminal vesicles.

2. There was no marked difference in the blood-plasma content of non-protein nitrogen, vitamin A and carotene at 6 months, as between twins on a normal (N) and low (L) plane of nutrition, although the L-twins were growing and maturing more slowly. However, the blood-plasma content of glucose and of most of the free amino acids, was slightly reduced as a result of underfeeding.

3. When at the age of 6 months two twin-pairs were castrated and injected with either testosterone or androstenedione (50 mg every 3rd day, for 2 months), the L-twins of both pairs and the N-twin of one pair grew at a faster rate. Moreover, the concentration of nitrogen in blood plasma increased, the rise being particularly evident in the content of indispensable amino acids. This effect, however, was more pronounced in the N- than in the L-twins.

4. Testosterone treatment enhanced libido in the N-twin but not in the corresponding L-twin. Androstenedione had no effect on libido in either the N-twin or the L-twin. Thus, although testosterone and androstenedione both effectively promoted growth and nitrogen metabolism, androstenedione, unlike testosterone, was devoid of androgenic activity.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Davies, D. V., Mann, T. & Rowson, L. E. A. (1957). Proc. R. Soc. B 147, 332.Google Scholar
Glover, J. & Walker, R. J. (1964). Exp. Eye Res. 3, 374.CrossRefGoogle Scholar
Halfpenny, A. F. & Rook, J. A. F. (1968). Proc. Nutr. Soc. 27, 19A.Google Scholar
Hay, M. F., Lindner, H. R. & Mann, T. (1961). Proc. R. Soc. B 154, 433.Google Scholar
Jaśkowski, L., Walkowski, L., Rulski, T., Szulc, L. & Klosowski, B. (1966). Polskie Archwm wet. 10, 191.Google Scholar
King, E. J. & Wootton, I. D. P. (1956). Micro-analysis in Medical Biochemistry. London: J. and A. Churchill.Google Scholar
Leathem, J. H. (1959). Reproductive Physiology and Protein Nutrition. New Brunswick: Rutgers University Press.Google Scholar
Leibholz, J. (1966). Aust. J. agric. Res. 17, 237.CrossRefGoogle Scholar
Lindner, H. R. & Mann, T. (1960). J. Endocr. 21, 341.CrossRefGoogle Scholar
Mann, T. (1946). Biochem. J. 40, 481.CrossRefGoogle Scholar
Mann, T. (1948). J. agric. Sci. 38, 323.CrossRefGoogle Scholar
Mann, T. (1967). Ciba Fdn Colloq. Endocr. 16, 233.Google Scholar
Mann, T., Davies, D. V. & Humphrey, G. F. (1949). J. Endocr. 6, 75.CrossRefGoogle Scholar
Mann, T. & Rowson, L. E. A. (1956). Proc. int. Congr. Anim. Reprod. III. Cambridge 1, 21.Google Scholar
Mann, T., Rowson, L. E. A. & Hay, M. F. (1960). J. Endocr. 21, 361.CrossRefGoogle Scholar
Mann, T., Rowson, L. E. A., Short, R. V. & Skinner, J. D. (1967). J. Endocr. 38, 455.CrossRefGoogle Scholar
Middleton, J. E. & Griffiths, W. J. (1957). Br. med. J. ii, 1525.CrossRefGoogle Scholar
Moore, T. (1957). Vitamin A. Amsterdam: Elsevier Publishing Company.Google Scholar
Moustgaard, J. (1959). In Reproduction in Domestic Animals. Vol. 2, p. 169. [Cole, H. H. and Cupps, P. T., editors.] New York and London: Academic Press Inc.Google Scholar
Roe, J. H. (1934). J. biol. Chem. 107, 15.CrossRefGoogle Scholar
Rondle, C. J. M. & Morgan, W. T. J. (1955). Biochem. J. 61, 586.CrossRefGoogle Scholar
Rowson, L. E. A. & Murdoch, M. I. (1954). Vet. Rec. 66, 326.Google Scholar
Short, R. V. & Mann, T. (1966). J. Reprod. Fert. 12, 337.CrossRefGoogle Scholar
Skinner, J. D., Mann, T. & Rowson, L. E. A. (1968). J. Endocr. 40, 261.CrossRefGoogle Scholar
Speck, J. F., Moulder, J. W. & Evans, E. A. Jr (1946). J. biol. Chem. 164, 119.CrossRefGoogle Scholar
Spratling, F. R., Bridge, P. S., Barnett, K. C., Abrams, J. T., Palmer, A. C. & Sharman, I. M. (1965). Vet. Rec. 77, 1532.Google Scholar
Thompson, J. N., Howell, J. McC. & Pitt, G. A. J. (1965). In Agents Affecting Fertility, p. 34. [Austin, C. R. and Perry, J. S., editors.] London: J. and A. Churchill.Google Scholar
Whitehead, R. G. (1964). Lancet i, 250.CrossRefGoogle Scholar
Whitehead, R. G. & Dean, R. F. A. (1964 a). Am. J. clin. Nutr. 14, 313.CrossRefGoogle Scholar
Whitehead, R. G. & Dean, R. F. A. (1964 b). Am. J. clin. Nutr. 14, 320.CrossRefGoogle Scholar