Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T10:22:23.290Z Has data issue: false hasContentIssue false

The effect of lumen conditions on oxygen uptake in perfused omasal laminae

Published online by Cambridge University Press:  24 July 2007

F. J. Lozeman
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, CanadaT6G 2P5
L. P. Milligan
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, CanadaT6G 2P5
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The vascular anatomy of the bovine omasal lamina permitted perfusion of a discrete area of the tissue. As occurs in vivo, oxygen was provided through the vascular system, while the luminal sides of the tissue could be kept in an anaerobic environment, thus allowing study of foregut tissue metabolism under physiologically realistic conditions.

2. O2 consumption of perfused leaves in the presence of anaerobic buffer was 64.9 and 73.5 nmol O2/mg dry weight per h in Expts 1 and 2 respectively, and was elevated (P < 0.05) when the lumen side of the tissue was exposed to an atmosphere of nitrogen gas.

3. In Expt 1, the rate of O2 consumption was increased (P < 0.01) by 35% as a result of suspension of a boiled preparation of rumen micro-organisms and particles (< 1 mm) in the anaerobic lumen buffer. Replacement of the boiled preparation with an unboiled suspension increased O2 consumption further by 11 %, but this was not statistically significant (P > 0.05).

4. In Expt 2, sequential addition of the following substrates or preparations to the lumen chambers all resulted in stepwise increases (P < 0.05) in O2 consumption; 8 mM-butyrate, boiled rumen micro-organisms and particles and, finally, unboiled rumen micro-organisms and particles.

5. Identities of the heat-labile and heat-stable components of the microbial and particle suspensions that caused enhancement of O2 removal across the perfused tissue are discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

American Institute of Physics (1972). American Institute of Physics Handbook [Gray, D. E., editor].Toronto: McGraw-Hill Book Co.Google Scholar
Baldwin, R. L. & Emery, R. S. (1960). Journal of Dairy Science 43, 506511.CrossRefGoogle Scholar
Bergman, E. N. (1975). In Digestion and Metabolism in the Ruminant, pp. 292305. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Chandrasena, L. G., Emmanuel, B., Hamar, D. W. & Howard, B. B. (1979). Comparative Biochemistry and Physiology 64B, 109112.Google Scholar
Cheng, K.-J. & Costerton, J. W. (1980). In Digestive Physiology and Metabolism in Ruminants, pp. 227250. [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Cheng, K.-J., Irvine, R. T. & Costerton, J. W. (1981). Canadian Journal of Microbiology 27, 461490.CrossRefGoogle Scholar
Comline, R. S., Silver, R. A. & Stevens, D. H. (1968). In Handbook of Physiology, Alimentary Canal, Sect. 6.pp. 26472671 [Code, C. F., editor].Washington, DC: American Physiological Society.Google Scholar
Czerkawski, J. W. (1969). World Review of Nutrition and Dietetics 11, 240282.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1969). British Journal of Nutrition 23, 6780.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1979). British Journal of Nutrition 42, 229245.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1982). British Journal of Nutrition 47, 331348.CrossRefGoogle Scholar
Czerkawski, J. W. & Clapperton, J. L. (1968). Laboratory Practice 17, 994996.Google Scholar
Dehority, B. A. & Grubb, J. A. (1981). Applied and Environmental Microbiology 41, 14241427.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 366382 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Engelhardt, W. v. & Hales, J. R. S. (1977). American Journal of Physiology 232, E53–E56.Google Scholar
Giesecke, D., Beck, E., Wiesmayr, S. & Stangassinger, M. (1979). Comparative Biochemistry and Physiology 62B, 459463.Google Scholar
Goosen, P. C. M. (1976). Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 37, 1425.CrossRefGoogle Scholar
Hird, F. J. R., Jackson, R. B. & Weidemann, M. J. (1966). Biochemical Journal 98, 394400.CrossRefGoogle Scholar
Hird, F. J. R. & Symons, R. H. (1959). Biochimica et Biophysica Acta 35, 422434.CrossRefGoogle Scholar
Hird, F. J. R. & Symons, R. H. (1961). Biochimica et Biophysica Acta 46, 457467.CrossRefGoogle Scholar
Hird, F. J. R. & Weidemann, M. J. (1964). Biochemical Journal 92, 585589.CrossRefGoogle Scholar
Hobson, P. N. & Wallace, R. J. (1982). Critical Reviews in Microbiology 9, 253320.CrossRefGoogle Scholar
Hughes, P. E. & Tove, S. B. (1980). Journal of Biological Chemistry 255, 44474452.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes, 1st ed. New York: Academic Press.Google Scholar
Jurtshuk, D. & Yang, I.-Y. (1980). In Diversity of Bacterial Respiratory Systems, vol. 1, pp. 137159 [Knowles, C. J.. editor]. Boca Raton: CRC Press, Inc.Google Scholar
Knowles, C. J. (editor) (1980). In Diversity of Bacterial Respiratory Systems, vol 2, pp. 139158. Boca Raton: CRC Press, Inc.Google Scholar
Koudakjian, P. P. & Snoswell, A. M. (1970). Biochemical Journal 119, 4957.CrossRefGoogle Scholar
Lloyd, D., Williams, J., Yarlett, N. & Williams, A. G. (1982). Journal of General Microbiology 128, 10191022.Google Scholar
McArthur, J. M. & Miltmore, J. E. (1961). Canadian Journal of Animal Science 41, 193196.CrossRefGoogle Scholar
McCowan, R. P., Cheng, K.-J., Bailey, C. B. M. & Costerton, J. W. (1978). Applied and Environmental Microbiology 35, 149155.CrossRefGoogle Scholar
McCowan, R. P., Cheng, K.-J. & Costerton, J. W. (1980). Applied and Environmental Microbiology 39, 233241.CrossRefGoogle Scholar
Mathison, G. W. (1972). Nitrogen metabolism in sheep. PhD Thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Mead, L. J. & Jones, G. A. (1981). Applied and Environmental Microbiology 41, 10201028.CrossRefGoogle Scholar
Pennington, P. J. (1954). Biochemical Journal 56, 410416.CrossRefGoogle Scholar
Ramm, V. M. (1968). Absorption of Gases. Jerusalem: IPST Press.Google Scholar
Sellers, A. F. (1965). In Physiology of Digestion in the Ruminant, pp. 171184. [Dougherty, R. W., editor]. Washington, DC: Butterworths Inc.Google Scholar
Stangassinger, M., Beck, V. & Emmanuel, B. (1979). Annales de Recherches Veterinaires 10, 413416.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed. Toronto: McGraw-Hill Book Co.Google Scholar
Stevens, C. E. (1970). In Physiology of Digestion and Metabolism in the Ruminant, pp. 101112 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1964). Manometric Techniques, 4th ed. Minneapolis: Burgess Publishing Co.Google Scholar
Wallace, R. J., Cheng, K.-J., Dinsdale, D. & Ørskov, E. R. (1979). Nature 279, 424426.CrossRefGoogle Scholar
Watson, H. R. & Lindsay, D. B. (1972). Biochemical Journal 128, 5357.CrossRefGoogle Scholar
Weekes, T. E. C. & Webster, A. J. F. (1975). British Journal of Nutrition 33, 425438.CrossRefGoogle Scholar
Yamazaki, S. & Tove, S. B. (1979). Journal of Biological Chemistry 254, 38123817.CrossRefGoogle Scholar
Yarlett, N., Lloyd, D. & Williams, A. G. (1982). Biochemical Journal 206, 259266.CrossRefGoogle Scholar