Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-26T16:31:01.479Z Has data issue: false hasContentIssue false

Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugali

Published online by Cambridge University Press:  09 March 2007

K. E. Bach Knudsen
Affiliation:
Carlsberg Research Laboratory, Department of Biotechnology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
L. Munck
Affiliation:
Carlsberg Research Laboratory, Department of Biotechnology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
B. O. Eggum
Affiliation:
National Institute of Animal Science, Department of Animal Physiology and Biochemistry, Forsøgsanlæeg Foulum, Postboks 39, DK-8833 Ørum Sdrl, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The present work was undertaken to study the effects of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of sorghum (Sorghum bicolor (L.) Moench). Three different sorghum varieties; Dabar, Feterita and Argentine containing zero, intermediate to low and high levels of polyphenols respectively were used in the study. From these varieties uncooked, uncooked acidified, cooked, and cooked acidified diets were prepared. Diets were characterized with regard to resistant starch (RS), dietary fibre (DF), acid-detergent fibre (ADF) and amino acid content. Raw materials were further analysed for content and composition of non-starch polysaccharides and Klason lignin. The nutritional properties were studied in balance trials with rats. True protein digestibility (TD), biological value (BV), net protein utilization, digestible amino acids, digestible energy (DE) and digestible DF were used as criteria in the nutritional study.

2. Cooking at neutral and acid pH resulted in significantly higher assayed values for DF. Increase in DF could be accounted for by formation of RS. Approximately 50% of RS was recovered in the faeces.

3. In vitro values for protein associated with ADF and in vivo balance values using rats suggest that an endosperm protein fraction, kafirins, was made unavailable during cooking. This resulted in reduced TD and increased BV. It is assumed that unavailable kafirins serve as a nitrogen source for microflora in the hind-gut.

4. Dietary polyphenols changed the excretory route for N from urine to faeces. This resulted in lower TD and higher BV in Argentine (high in polyphenols) than in Dabar and Feterita (low in polyphenols), although dietary lysine (first limiting amino acid) was the same in the three varieties.

5. Variation in DE of the diets was attributed to DF, RS and the amount of faecal protein, which in turn were influenced by undigested kafirins and polyphenols.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Åman, P. & Hesselman, K. (1984). Swedish Journal of Agricultural Research 14, 135139.Google Scholar
Asp, N.-G., Johansson, C.-G., Hallmer, H. & Siljestrøm, M. (1983). Journal of Agricultural and Food Chemistry 31, 476482.CrossRefGoogle Scholar
Asquith, T., Izuno, C. C. & Butler, L. G. (1983). Journal of Agricultural and Food Chemistry 21, 12991303.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1975). Official Methods of Analysis, 11th ed. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Bach, Knudsen K. E., Åman, P. & Eggum, B. O. (1987). Journal of Cereal Science 6 173186.CrossRefGoogle Scholar
Bach, Knudsen K. E. & Munck, L. (1985). Journal of Cereal Science 3, 153164.CrossRefGoogle Scholar
Bjørck, I., Nyman, M., Pedersen, B., Liljestrøm, M., Asp, N.-G. & Eggum, B. O. (1986). Journal of Cereal Science 4, 111.CrossRefGoogle Scholar
Butler, L. G. (1982). In Sorghum Grain Quality, pp. 294311 [Rooney, L. W., Murty, D. S. and Mertin, J. V., editors]. Hyderabad, India: International Crop Research Institute of Semi-arid Tropics.Google Scholar
Cummings, J. H. (1981). British Medical Bulletin 37, 6570.CrossRefGoogle Scholar
Dintzis, F. R., Legg, L. M., Deasherage, W. L., Baker, F. I., Inglett, G. E., Jacob, R. A., Reck, S. J., Munoz, J. M., Klevay, L. M., Sandstead, H. H. & Shuey, W. G. (1979). Cereal Chemistry 56, 123127.Google Scholar
Donnelly, E. D. & Anthony, W. B. (1969). Crop Science 9, 361362.CrossRefGoogle Scholar
Eggum, B. O. (1973). A Study of Certain Factors Influencing Protein Utilization in Rats and Pigs. Report no. 406, 173 pp. Copenhagen: National Institute of Animal Science.Google Scholar
Eggum, B. O. & Christensen, K. D. (1973). In Breeding for Seed Protein Improvement using Nuclear Techniques. Proceedings of the Research Coordinating Meeting, Ibadan, pp. 135142. Vienna: International Atomic Energy Agency.Google Scholar
Eggum, B. O., Monowar, L., Bach, Knudsen K. E., Munck, L. & Axtell, J. (1983). Journal of Cereal Science 1, 127137.CrossRefGoogle Scholar
Eggum, B. O., Munck, L., Bach, Knudsen K. E., Axtell, J. & Mukuru, S. Z. (1982). In Sorghum Grain Quality, pp. 211225 [Rooney, L. W., Murty, P. S. and Mertin, J. V., editors]. Hyderabad, India: International Crop Research Institute for Semi-arid Tropics.Google Scholar
Englyst, H. N., Anderson, V. & Cummings, J. H. (1983). Journal of the Science of Food and Agriculture 34, 14341440.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1984). Analyst 109, 937942.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985). American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle Scholar
Englyst, H. N., Wiggins, H. S. & Cummings, J. H. (1982). Analyst 107, 307318.CrossRefGoogle Scholar
Gøranzon, H. & Forsum, E. (1987). Journal of Nutrition 117, 267273.CrossRefGoogle Scholar
Hulse, J. H., Learing, E. M. & Pearson, O. E. (1980). Sorghum and the Millets: Their Composition and Nutritive Value. New York: Academic Press.Google Scholar
Johansson, C.-G., Liljestrom, M. & Asp, N.-G. (1984). Zeitschrift für Lebensmittel-Untersuchung and -Forschung 179, 2428.CrossRefGoogle Scholar
Jørgensen, K. G. & Aastrup, S. (1987). In Modern Methods of Plant Analysis, vol. 7 [Linskens, H. F. and Linskens, J. F. and Jackson, J. F., editors]. Berlin: Springer Verlag (In the Press).Google Scholar
Keys, J. E. & DeBarthe, J. V. (1974). Journal of Animal Science 39, 5356.CrossRefGoogle Scholar
Larsson, K. & Bengtsson, S. (1983). Metodebeskrivelse nr. 22 fra Statens Landbrukskemiske Laboratorium, Uppsala, Sweden, pp. 19.Google Scholar
MacLean, W. C., Romana, G. L., de Plancko, R. P. & Graham, G. G. (1981). Journal of Nutrition 111, 19281936.CrossRefGoogle Scholar
MacLean, W. C., Romana, G. L., de Plancko, R. P. & Graham, G. G. (1983). Journal of Nutrition 113, 20712077.CrossRefGoogle Scholar
Mason, V. C., Bech-Andersen, S. & Rudemo, M. (1980). Zeitschrift für Tierphysiologie, Tierernährung and Futtermittelkunde 43, 146164.CrossRefGoogle Scholar
Mason, V. C. & Palmer, R. (1973). Acta Agriculturae Scandinavica 23, 141150.CrossRefGoogle Scholar
Maxson, E. D. & Rooney, L. W. (1972). Cereal Chemistry 49, 719729.Google Scholar
Mukuru, S. Z., Muskenga, J. N. & Murty, D. S. (1982). In Sorghum Grain Quality, pp. 3944 [Rooney, L. W., Murty, D. S. and Mertin, J. V., editors]. Hyderabad, India: International Crop Research Institute of Semi-arid Tropics.Google Scholar
Nyman, M. & Asp, N.-G. (1982). British Journal of Nutrition 47, 357366.CrossRefGoogle Scholar
Nyman, M., Asp, N.-G., Pedersen, B. & Eggum, B. O. (1985). Journal of Cereal Science 3, 207219.CrossRefGoogle Scholar
Nyman, M., Siljestrøm, M., Pedersen, B., Bach, Knudsen K. E., Asp, N.-G., Johansson, C.-G. & Eggum, B. O. (1984). Cereal Chemistry 61, 1419.Google Scholar
Pedersen, B. & Eggum, B. O. (1983 a). Qualitas Plantarum: Plant Foods for Human Nutrition 32, 185195.CrossRefGoogle Scholar
Pedersen, B. & Eggum, B. O. (1983 b). Qualitas Plantarum: Plant Foods for Human Nutrition 33, 5161.CrossRefGoogle Scholar
Pedersen, B. & Eggum, B. O. (1983 c). Qualitas Plantarum: Plant Foods for Human Nutrition 33, 267278.CrossRefGoogle Scholar
Pedersen, B. & Eggum, B. O. (1983 d). Qualitas Plantarum: Plant Foods for Human Nutrition 33, 299311.CrossRefGoogle Scholar
Price, M. L., Hagerman, A. E. & Butler, L. G. (1980). Nutrition Reports International 21, 761767.Google Scholar
Saba, W. J., Hale, W. H. & Theurer, B. (1972). Journal of Animal Science 35, 10761082.CrossRefGoogle Scholar
Sandberg, A.-S., Anderson, H., Kivisto, B. & Sandstrom, B. (1986). British Journal of Nutrition 55, 245254.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1973) Statistical Methods. Ames, Iowa: The Iowa State University Press.Google Scholar
Theander, O. & Åman, P. (1979). Swedish Journal of Agricultural Research 9, 97106.Google Scholar
Theander, O. & Westerlund, E. (1986). Journal of Agricultural and Food Chemistry 34, 330336.CrossRefGoogle Scholar
Van Soest, P. J. (1963). Journal of the Association of Agricultural Chemistry 46, 829835.Google Scholar
Vogel, S. & Graham, M. (1978). In Sorghum and Millet: Food Production and Use, pp. 164 [Vogel, S. and Graham, M., editors]. Report of a Workshop held in Nairobi, Kenya, 4-7 July 1978. Ottowa, Canada: International Development Research Center.Google Scholar