Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T20:17:43.078Z Has data issue: false hasContentIssue false

Early hepatic proteomic signatures reveal metabolic changes in high-fat-induced obesity in rats

Published online by Cambridge University Press:  27 October 2023

Abhishak C. Gupta*
Affiliation:
Department of Education and Research, Artemis Hospitals, Gurugram, Haryana, India Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
Adil Bhat
Affiliation:
Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
Jaswinder S. Maras
Affiliation:
Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
*
*Corresponding author: Abhishak C. Gupta, email abhishak.gupta@artemishospitals.com

Abstract

The prevalence of diet-related obesity is increasing dramatically worldwide, making it important to understand the associated metabolic alterations in the liver. It is well known that obesity is a multifactorial condition that is the result of complex integration between many gene expressions and dietary factors. Obesity alone or in conjunction with other chronic diseases such as diabetes and insulin resistance causes many health problems and is considered a major risk factor for developing non-alcoholic steatohepatitis (NASH) and cirrhosis. In this study, we aimed to understand the molecular mechanisms underlying early hepatic changes in the pathophysiology of high-fat diet (HFD)-induced abdominal obesity in rats. Hepatic protein profiles of normal diet and HFD-induced obesity for 24 weeks were analysed using two-dimensional differential gel electrophoresis (DIGE) and protein identification by MS. Fifty-two proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and computer-assisted DIGE image software analysis showed that eighteen major proteins were significantly differentially expressed between comparable groups, with 2·0–4·0-fold change/more (P < 0·01). These proteins are regulated in response to a HFD, and differentially expressed proteins are involved in key metabolic pathways such as lipid metabolism, energy metabolism, detoxification, urea cycle and hepatic Ca homoeostasis. In addition, Western blot and immunohistochemistry of liver-specific arginase-1 (Arg-1) showed significant increased expression in the liver of high-fat-fed rats (P < 0·01). Further, Arg-1 expression was correlated with NASH patients with obesity-related fibrosis (F0–F4). It is concluded that high-fat content may affect changes in liver pathways and may be a therapeutic target for obesity-related liver disease. Arg-1 expressions may be a potential pathological marker for assessing the progression of the disease.

Type
Research Article
Copyright
© Artemis Education and Ressearch Foundation (AERF), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, P (2002) Nonalcoholic fatty liver disease. N Engl J Med 18, 12211231.CrossRefGoogle Scholar
Malik, VS, Willett, WC & Hu, FB (2013) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9, 1327.CrossRefGoogle ScholarPubMed
Kahn, SE, Hull, RL & Utzschneider, KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840846.CrossRefGoogle ScholarPubMed
Gupta, AC, Chaudhory, AK, Sukriti, C, et al. (2010) Peroxisome proliferators-activated receptor γ2 Pro12Ala variant is associated with body mass index in non-alcoholic fatty liver disease patients. Hepatol Int 1, 575580.Google Scholar
Brunt, EM, Janney, CG, Di Bisceglie, AM, et al. (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94, 24672474.CrossRefGoogle ScholarPubMed
Liang, W, Menke, AL, Driessen, A, et al. (2014) Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 23, 9e115922.Google Scholar
Kleinert, M, Clemmensen, C, Hofmann, S, et al. (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14, 140162.CrossRefGoogle ScholarPubMed
Maric, I, Krieger, JP, van der Velden, P, et al. (2022) Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Front Nutr 17, 9828522.Google Scholar
Jha, P, Knopf, A, Koefeler, H, et al. (2014) Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta 1842, 959970.CrossRefGoogle ScholarPubMed
Van Heek, M, Compton, DS, France, CF, et al. (1997) Diet-induced obese rats develop peripheral, but not central, resistance to leptin. J Clin Invest 99, 385390.CrossRefGoogle Scholar
Warden, CH & Fisler, JS (2008) Comparisons of diets used in animal models of high-fat feeding. Cell Metab 7, 277.CrossRefGoogle ScholarPubMed
Speakman, JR (2019) Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes (Lond) 43, 14911492.CrossRefGoogle Scholar
Woods, SC, Seeley, RJ, Rushing, PA, et al. (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133, 10811087.CrossRefGoogle ScholarPubMed
Sang, J, Qu, H, Gu, R, et al. (2019) Proteomics study of the effect of high-fat diet on rat liver. Br J Nutr 122, 10621072.CrossRefGoogle ScholarPubMed
Tannu, NS & Hemby, SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1, 17321742.CrossRefGoogle ScholarPubMed
Satoor, SN, Puranik, AS, Kumar, S, et al. (2011) Location, location, location: beneficial effects of autologous fat transplantation. Sci Rep 1, 81.CrossRefGoogle Scholar
Hardikar, AA, Satoor, SN, Karandikar, MS, et al. (2015) Multigenerational under nutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab 22, 312319.CrossRefGoogle Scholar
Wiśniewski, JR, Zougman, A, Nagaraj, N, et al. (2009) Universal sample preparation method for proteome analysis. Nat Methods 5, 359362.CrossRefGoogle Scholar
Bradford, MM (1976) Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.CrossRefGoogle Scholar
Blundon, M, Ganesan, V, Redler, B, et al. (2019) Two-Dimensional Difference Gel Electrophoresis. In: Electrophoretic Separation of Proteins. Methods in Molecular Biology, vol 1855 [B Kurien and R Scofield, editors]. New York, NY: Humana Press.Google Scholar
Dyballa, N & Metzger, S (2009) Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp 30, 1431.Google Scholar
Käll, L, Canterbury, JD, Weston, J, et al. (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4, 923925.CrossRefGoogle ScholarPubMed
Perkins, DN, Pappin, DJC, Creasy, DM, et al. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, Suppl. 18, 35513567.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Bajpai, AK, Davuluri, S, Tiwary, K, et al. (2020) Systematic comparison of the protein–protein interaction databases from a user’s perspective. J Biomed Inform 103, 103380.CrossRefGoogle ScholarPubMed
Yan, BC, Gong, C, Song, J, et al. (2010) Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am J Surg Pathol 34, 11471154.CrossRefGoogle ScholarPubMed
Koteish, A & Diehl, AM (2001) Animal models of steatosis. Semin Liver Dis 1, 89104.CrossRefGoogle Scholar
Bournat, JC & Brown, CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17, 446452.CrossRefGoogle ScholarPubMed
Kübeck, R, Bonet-Ripoll, C, Hoffmann, C, et al. (2016) Dietary fat and gut microbiota interactions determine diet-induced obesity in rats. Mol Metab 5, 11621174.CrossRefGoogle Scholar
Stephenson, K, Kennedy, L, Hargrove, L, et al. (2018) Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Expr 18, 517.CrossRefGoogle ScholarPubMed
Alshawsh, MA, Alsalahi, A, Alshehade, SA, et al. (2022) A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet. Molecules 27, 858.CrossRefGoogle ScholarPubMed
Huang, B, Yao, Y, Li, Y, et al. (2019) Proteomics approach to investigate dynamic protein profile involved in high fat diet-induced fatty liver disease in rats. J Toxicol Pathol 4, 223232.CrossRefGoogle Scholar
Luukkonen, PK, Dufour, S, Lyu, K, et al. (2020) Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci 13, 73477354.CrossRefGoogle Scholar
Fromenty, B & Roden, M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78, 415429.CrossRefGoogle ScholarPubMed
Kuno, A, Matsuda, A, Ikehata, Y, et al. (2014) Identification of aldo-keto reductase family 1 member B10 in human hepatocellular carcinoma. Int J Oncol 44, 19771986.Google Scholar
Hooper, PL & Hooper, PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14, 113115.CrossRefGoogle ScholarPubMed
Habich, C & Sell, H (2015) Heat shock proteins in obesity: links to cardiovascular disease. Horm Mol Biol Clin Investig 2, 117124.CrossRefGoogle Scholar
Liu, T, Gou, L, Yan, S, et al. (2020) Inhibition of acetyl-CoA carboxylase by PP-7a exerts beneficial effects on metabolic dysregulation in a mouse model of diet-induced obesity. Exp Ther Med 20, 521529.CrossRefGoogle Scholar
Younossi, ZM, Baranova, A, Ziegler, K, et al. (2005) A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology 42, 665674.CrossRefGoogle ScholarPubMed
Younossi, ZM, Gorreta, F, Ong, JP, et al. (2005) Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int 25, 760771.CrossRefGoogle ScholarPubMed
Ahn, CW, Jun, DS, Na, JD, et al. (2016) Alleviation of hepatic fat accumulation by betaine involves reduction of homocysteine via up-regulation of betaine-homocysteine methyltransferase (BHMT). Biochem Biophys Res Commun 477, 440447.CrossRefGoogle ScholarPubMed
Pellanda, H (2013) Betaine homocysteine methyltransferase (BHMT)-dependent remethylation pathway in human healthy and tumoral liver. Clin Chem Lab Med 51, 617621.CrossRefGoogle ScholarPubMed
Kharbanda, KK, Mailliard, ME, Baldwin, CR, et al. (2007). Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidyl ethanolamine methyl transferase pathway. J Hepatol 46, 314321.CrossRefGoogle Scholar
De Chiara, F, Heebøll, S, Marrone, G, et al. (2018) Urea cycle dysregulation in non-alcoholic fatty liver disease. J Hepatol 69, 905915.CrossRefGoogle ScholarPubMed
Piao, L, Choi, J, Kwon, G, et al. (2017) Endogenous catalase delays high-fat diet-induced liver injury in rats. Korean J Physiol Pharmacol 21, 317325.CrossRefGoogle Scholar
Park, H, Ishigami, A, Shima, T, et al. (2010) Hepatic senescence marker protein-30 is involved in the progression of nonalcoholic fatty liver disease. J Gastroenterol 45, 426434.CrossRefGoogle ScholarPubMed
Yamaguchi, M & Murata, T (2013) Involvement of regucalcin in lipid metabolism and diabetes. Metabolism 62, 10451051.CrossRefGoogle ScholarPubMed
De Chiara, F, Heebøll, S, Marrone, G, et al. (2018) Urea cycle dysregulation in non-alcoholic fatty liver disease. J Hepatol 69, 905915.CrossRefGoogle ScholarPubMed
Gallego-Durán, R, Ampuero, J, Pastor-Ramírez, H, et al. (2022) Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation. Sci Rep 1, 3418.CrossRefGoogle Scholar
Oates, JR, McKell, MC, Moreno-Fernandez, ME, et al. (2019) Macrophage function in the pathogenesis of non-alcoholic fatty liver disease: the Mac attack. Front Immunol 12, Suppl. 10, 2893.CrossRefGoogle Scholar
McKnight, R, Nassar, A, Cohen, C, et al. (2012) Arginase-1: a novel immunohistochemical marker of hepatocellular differentiation in fine needle aspiration cytology. Cancer Cytopathol 25, 223229.CrossRefGoogle Scholar
Maras, JS, Das, S, Sharma, S, et al. (2018) Iron-overload triggers ADAM-17 mediated inflammation in severe alcoholic hepatitis. Sci Rep 8, 10264.CrossRefGoogle ScholarPubMed
Maras, JS, Das, S, Bhat, A, et al. (2019) Dysregulated lipid transport proteins correlate with pathogenesis and outcome in severe alcoholic hepatitis. Hepatol Comm 3, Suppl. 12, 15981625.CrossRefGoogle ScholarPubMed
Hu, X, Leak, RK, Shi, Y, et al. (2015) Microglial and macrophage polarization - new prospects for brain repair. Nat Rev Neurol 11, Suppl. 1, 5664.CrossRefGoogle ScholarPubMed
Fujiwara, M, Kwok, S, Yano, H, et al. (2012) Arginase-1 is a more sensitive marker of hepatic differentiation than HepPar-1 and glypican-3 in fine-needle aspiration biopsies. Cancer Cytopathol 120, 230237.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gupta et al. supplementary material

Gupta et al. supplementary material
Download Gupta et al. supplementary material(File)
File 12.2 KB