Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:55:00.464Z Has data issue: false hasContentIssue false

Dietary sodium sources according to four 3-d weighed food records and their association with multiple 24-h urinary excretions among middle-aged and elderly Japanese participants in rural areas

Published online by Cambridge University Press:  18 August 2022

Fuyuka Ogawa
Affiliation:
Department of Food Science and Nutrition, Nara Women’s University Graduate School of Humanities and Sciences, Kitauoyahigashimachi Nara-shi, Nara, 630-8506, Japan
Ribeka Takachi*
Affiliation:
Department of Food Science and Nutrition, Nara Women’s University Graduate School of Humanities and Sciences, Kitauoyahigashimachi Nara-shi, Nara, 630-8506, Japan
Junko Ishihara
Affiliation:
Graduate School of Environmental Health, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-city, Kanagawa, 252-5201, Japan
Marina Yamagishi
Affiliation:
Department of Food Science and Nutrition, Nara Women’s University Graduate School of Humanities and Sciences, Kitauoyahigashimachi Nara-shi, Nara, 630-8506, Japan
Sachiko Maruya
Affiliation:
Department of Food Science and Nutrition, Nara Women’s University Graduate School of Humanities and Sciences, Kitauoyahigashimachi Nara-shi, Nara, 630-8506, Japan
Yuri Ishii
Affiliation:
Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
Kumiko Kito
Affiliation:
Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
Kazutoshi Nakamura
Affiliation:
Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Niigata, 951-8510, Japan
Junta Tanaka
Affiliation:
Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Niigata, 951-8510, Japan
Taiki Yamaji
Affiliation:
Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
Hiroyasu Iso
Affiliation:
Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-city, Osaka, 565-0871, Japan Institute for Global Health Policy Research, Bureau of International Cooperation, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
Motoki Iwasaki
Affiliation:
Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
Shoichiro Tsugane
Affiliation:
Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Sinjuku, Tokyo, 162-8636, Japan
Norie Sawada
Affiliation:
Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
*
*Corresponding author: Ribeka Takachi, email rtakachi@cc.nara-wu.ac.jp

Abstract

Reducing Na intake is an urgent global challenge, especially in East Asia and high-income Asia-Pacific regions. However, the sources of Na and their effects on urinary Na excretion have not been fully studied. We sought to clarify these sources and their association with urinary Na excretion. We examined four 3-d weighed food records and five 24-h urinary collections from each of 253 participants in Japan, aged 35–80 years, between 2012 and 2013. We compared the levels of Na according to four categories: foods contributing to discretionary or non-discretionary Na intake, the situation in which dishes were cooked and consumed, food groups and types of cuisine. We also conducted regression analysis in which 24-h urinary Na excretion was a dependent variable and the amounts of food intake in the four categories were independent variables. Levels of Na were the highest in discretionary intake (60·6 %) and in home-prepared dishes (84·0 %). Of the food groups, miso soup showed the highest percentage contribution to Na intake (13·3 %) after seasonings such as soya sauce. In the regression analysis, the standardised coefficient for foods of non-discretionary Na sources was larger than that for discretionary sources, whereas that for home-prepared dishes was consistent with the levels of Na in those foods. Pickled products, followed by fresh fish and shellfish, miso soup and rice, were associated with high urinary Na excretion. Thus, discretionary foods (such as miso soup) contribute the most to Na consumption, although non-discretionary intake (such as pickled vegetables) may influence urinary Na excretion.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

GBD 2017 Diet Collaborators (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 19581972.CrossRefGoogle Scholar
WHO (2012) Guideline: Sodium Intake for Adults and Children. Geneva: WHO. (Reprinted, 2014)Google Scholar
Powles, J, Fahimi, S, Micha, R, et al. (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e003733.CrossRefGoogle ScholarPubMed
Bibbins-Domingo, K, Chertow, GM, Coxson, PG, et al. (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362, 590599.CrossRefGoogle ScholarPubMed
Bhat, S, Marklund, M, Henry, ME, et al. (2020) A systematic review of the sources of dietary salt around the world. Adv Nutr 11, 677686.CrossRefGoogle ScholarPubMed
He, FJ, Brinsden, HC & MacGregor, GA (2014) Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens 28, 345352.CrossRefGoogle ScholarPubMed
Ministry of Health, Labour and Welfare (2000) Health Japan 21 Overview. https://www.mhlw.go.jp/www1/topics/kenko21_11/s0.html#A0 (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2000) Health Japan 21 Nutrition and Dietary Life. https://www.mhlw.go.jp/www1/topics/kenko21_11/b1.html#A11 (accessed July 2022).Google Scholar
Yoshiike, N, Hayashi, F, Takemi, Y, et al. (2007) A new food guide in Japan: the Japanese food guide Spinning Top. Nutr Rev 65, 149154.CrossRefGoogle ScholarPubMed
Ministry of Health, Labour and Welfare (2002) The 2001 National Health and Nutrition Survey in Japan. https://www.mhlw.go.jp/toukei/kouhyo/indexkk_14_8.html (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2012) The 2010 National Health and Nutrition Survey in Japan. https://www.mhlw.go.jp/bunya/kenkou/eiyou/h22-houkoku.html (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2012) Health Japan 21 The Second Term. https://www.nibiohn.go.jp/eiken/kenkounippon21/en/kenkounippon21/ (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2015) The 2013 National Health and Nutrition Survey in Japan. https://www.mhlw.go.jp/bunya/kenkou/eiyou/h25-houkoku.html (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2020) The 2019 National Health and Nutrition Survey in Japan. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed July 2022).Google Scholar
He, FJ, Wu, Y, Feng, XX, et al. (2015) School based education programme to reduce salt intake in children and their families (School-EduSalt): cluster randomised controlled trial. BMJ 350, h770.CrossRefGoogle ScholarPubMed
Anderson, CA, Appel, LJ, Okuda, N, et al. (2010) Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40–59 years: the INTERMAP study. J Am Diet Assoc 110, 736745.CrossRefGoogle Scholar
Takimoto, H, Saito, A, Htun, NC, et al. (2018) Food items contributing to high dietary salt intake among Japanese adults in the 2012 National Health and Nutrition Survey. Hypertens Res 41, 209212.CrossRefGoogle ScholarPubMed
Imai, T, Tsuji, T, Yamamoto, H, et al. (2014) Comparing the main regular dietary mineral source among elementary students, college students, and the elderly based on weighing dietary records. Jpn J Nutr Diet 72, 5166.CrossRefGoogle Scholar
Ogawa, K, Tsubono, Y, Nishino, Y, et al. (2002) Dietary sources of nutrient consumption in a rural Japanese population. J Epidemiol 12, 18.CrossRefGoogle Scholar
Tsubono, Y, Takamori, S, Kobayashi, M, et al. (1996) A data-based approach for designing a semiquantitative food frequency questionnaire for a population-based prospective study in Japan. J Epidemiol 6, 4553.CrossRefGoogle ScholarPubMed
Shimbo, S, Imai, Y, Yasumoto, M, et al. (1993) Quantitative identification of sodium chloride sources in Japanese diet by 24-hour total food duplicate analysis. J Epidemiol 3, 7782.CrossRefGoogle Scholar
Asakura, K, Uechi, K, Masayasu, S, et al. (2016) Sodium sources in the Japanese diet: difference between generations and sexes. Public Health Nutr 19, 20112023.CrossRefGoogle ScholarPubMed
Liu, ZM, Ho, SC, Tang, N, et al. (2014) Urinary sodium excretion and dietary sources of sodium intake in Chinese postmenopausal women with prehypertension. PLoS One 9, e104018.CrossRefGoogle ScholarPubMed
Yokoyama, Y, Takachi, R, Ishihara, J, et al. (2016) Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J Epidemiol 26, 420432.CrossRefGoogle Scholar
Sun, Q, Bertrand, KA, Franke, AA, et al. (2017) Reproducibility of urinary biomarkers in multiple 24-h urine samples. Am J Clin Nutr 105, 159168.CrossRefGoogle ScholarPubMed
Sasaki, S, Kobayashi, M & Tsugane, S (2003) Validity of a self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC Study Cohort I: comparison with dietary records for food groups. J Epidemiol 13, S57S63.CrossRefGoogle ScholarPubMed
Ministry of Educational, Cultural, Sports, Science and Technology-Japan (2010) The Standard Tables of Food Composition in Japan (Sixth Revised Version). https://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/houkoku/1298713.htm (accessed July 2022).Google Scholar
Ministry of Health, Labour and Welfare (2014) The 2012 National Health and Nutrition Survey in Japan https://www.mhlw.go.jp/bunya/kenkou/eiyou/h24-houkoku.html (accessed July 2022).Google Scholar
Fukumoto, A, Asakura, K, Murakami, K, et al. (2013) Within- and between-individual variation in energy and nutrient intake in Japanese adults: effect of age and sex differences on group size and number of records required for adequate dietary assessment. J Epidemiol 23, 178186.CrossRefGoogle Scholar
Ogawa, K, Tsubono, Y, Nishino, Y, et al. (1999) Inter- and intra-individual variation of food and nutrient consumption in a rural Japanese population. Eur J Clin Nutr 53, 781785.CrossRefGoogle Scholar
Jeong, Y, Kim, ES, Lee, J, et al. (2021) Trends in sodium intake and major contributing food groups and dishes in Korea: the Korea National Health and Nutrition Examination Survey 2013–2017. Nutr Res Pract 15, 382395.CrossRefGoogle ScholarPubMed
Nanri, A, Shimazu, T, Ishihara, J, et al. (2012) Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire used in the 5-year follow-up survey of the Japan Public Health Center-Based Prospective Study. J Epidemiol 22, 205215.CrossRefGoogle ScholarPubMed
Takachi, R, Ishihara, J, Iwasaki, M, et al. (2014) Self-reported taste preference can be a proxy for daily sodium intake in middle-aged Japanese adults. J Acad Nutr Diet 114, 781787.CrossRefGoogle ScholarPubMed
U.S. Department of Agriculture (2021) Agricultural Research Service Food Data Central. https://fdc.nal.usda.gov/ (accessed July 2022).Google Scholar
Supplementary material: PDF

Ogawa et al. supplementary material

Tables S1-S3

Download Ogawa et al. supplementary material(PDF)
PDF 238.8 KB