Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T01:09:13.808Z Has data issue: false hasContentIssue false

Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats

Published online by Cambridge University Press:  09 March 2007

J. C. Mathers
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle, Newcastle upon Tyne NE1 7RU
Fresia Fernandez
Affiliation:
Bacterial Metabolism Research Laboratory, PHLS Centre for Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire SP4 0JG
M. J. Hill
Affiliation:
Bacterial Metabolism Research Laboratory, PHLS Centre for Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire SP4 0JG
P. T. McCarthy
Affiliation:
Haematology Research Laboratory, Guy's Hospital, London SE1 9RT
M. J. Shearer
Affiliation:
Haematology Research Laboratory, Guy's Hospital, London SE1 9RT
A. Oxley
Affiliation:
Department of Haematology, Royal Victoria Infirmary, Newcastle upon Tyne
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rats given a low-fibre diet based on boiled white rice developed symptoms of severe vitamin K deficiency within 23 d. Inclusion of autoclaved black-eye beans (Vigna unguiculata) in the diet prevented the bleeding syndrome. To test the hypothesis that deficiency resulted from low phylloquinone intake exacerbated by inadequate production of menaquinones by the enteric bacteria, a follow-up experiment was carried out in which groups of rats were given an all-rice diet, a rice+beans diet or a stock diet. Rats on the allrice diet had significantly lower faecal concentrations of the main menaquinone-producing bacterial species (Bacteroides fragilis and Bacteroides vulgutus) than animals on either of the other two diets. This coupled with the much lower faecal output on this diet suggests that total menaquinone production was low for the all-rice diet. The alterations in faecal flora were associated with several significant changes in caecal metabolism. Rats given the stock diet had much shorter caecal transit times and a considerably greater proportion of butyric acid in volatile fatty acid end-products than did rats on either of the other two diets.

Type
Fat-salnable Vitamins
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Allison, P. M., Mummah-Schendel, L. L., Kindberg, C. G., Harms, C. S., Bang, N. U. & Suttie, J. W. (1987). Effects of a vitamin K-deficient diet and antibiotics in normal human volunteers. Journal of Laboratory and Clinical Medicine 110, 180188.Google ScholarPubMed
Barnes, R. H. & Fiala, G. (1959). Effects of the prevention of coprophagy in the rat. VI. Vitamin K. Journal of Nutrition 68, 603614.CrossRefGoogle Scholar
Black, S., Overman, R. S., Elvehjem, C. A. & Link, K. P. (1942). The effect of sulfaguanidine on rat growth and plasma prothrombin. Journal of Biological Chemistry 145, 137143.CrossRefGoogle Scholar
Borriello, S. P. (1986). Microbial flora of the gastrointestinal tract. In Microbial Metabolism in the Digestive Tract, pp. 119 [Hill, M. J.. editor]. Boca Raton, Florida: CRC Press Inc.Google Scholar
Borriello, S. P., Hudson, M. & Hill, M. (1978). Investigation of the gastrointestinal bacterial flora. Clinics in Gastroenterology 7, 329349.CrossRefGoogle ScholarPubMed
Bullen, C. L., Tearle, P. V. & Stewart, M. G. (1977). The effect of ‘humanized’ milks and supplemented breast feeding on the faecal flora of infants. Journal of Medical Microbiology 10, 403413.CrossRefGoogle Scholar
Cheng, B.-Q., Trimble, R. P., Illman, R. J., Stone, B. A. & Topping, D. L. (1987). Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat. British Journal of Nutrition 57, 6976.CrossRefGoogle ScholarPubMed
Collins, M. D., Fernandez, F., & Howarth, O. W. (1985). Isolation and characterization of a novel vitamin-K from Eubacterium lentum. Biochemical and Biophysical Research Communications 133, 322328.CrossRefGoogle ScholarPubMed
Collins, M. D. & Jones, D. (1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiological Reviews 45, 316354.CrossRefGoogle Scholar
Colvin, B. T. & Lloyd, M. J. (1977). Severe coagulation defect due to a dietary deficiency of vitamin K. Journal of Clinical Pathology 30, 11471148.CrossRefGoogle ScholarPubMed
Cowan, S. T. & Steel, K. J. (1965). Manual for Identification of Medical Bacteria. Cambridge: Cambridge University Press.Google Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors], Armidale: University of New England Publishing Unit.Google Scholar
Fernandez, F. & Collins, M. D. (1987). Vitamin K composition of anaerobic gut bacteria. FEMS Microbiological Letters 41, 175180.CrossRefGoogle Scholar
Goodlad, J. S. & Mathers, J. C. (1987). Digesta flow from the ileum and transit time through the caecum of rats given diets containing graded levels of peas. Proceedings of the Nutrition Society 46, 149A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1988). Effects of food carbohydrates on large intestinal fermentation in vitro. Proceedings of the Nutrition Society 47, 176A.Google Scholar
Gustafsson, B. E. (1959). Vitamin K deficiency in germfree rats. Annals of the New York Academy of Sciences 78, 166174.CrossRefGoogle ScholarPubMed
Haroon, Y., Shearer, M. J., Rahim, S., Gunn, W. G., McEnery, G. & Barkhan, P. (1982). The content of phylloquinone (vitamin K1) in human milk, cows milk and infant formula foods determined by high-performance liquid chromatography. Journal of Nutrition 112, 11051117.CrossRefGoogle ScholarPubMed
Hart, J. P., Shearer, M. J. & McCarthy, P. T. (1985). Enhanced sensitivity for the determination of endogenous phylloquinone (vitamin K1) in plasma using high-performance liquid chromatography with dual-electrode electrochemical detection. Analyst 110, 11811184.CrossRefGoogle ScholarPubMed
Holdeman, L. V., Cato, E. P. & Moore, W. E. (1977). Anuerobe Laboratory Manual, 4th ed. Blacksburg, Virginia: Virginia Polytechnic Institute.Google Scholar
Hollander, D., Muralidhara, K. S. & Rim, S. (1976). Colonic absorption of bacterially synthesized vitamin K2 in the rat. American Journal of Physiology 230, 251255.CrossRefGoogle ScholarPubMed
Hooper, C. A., Haney, B. B. & Stone, H. H. (1980). Gastrointestinal bleeding due to vitamin K deficiency in patients on parenteral cefamandole. Lancet i, 3940.CrossRefGoogle Scholar
Horn, N., Wyatt, G. M., Bayliss, C. E., Gee, J. M. & Johnson, I. T. (1986). The effect of dietary fibre on bacterial densities in the rat intestine. Food Microbiology 3, 295302.CrossRefGoogle Scholar
Hoverstad, T., Carlstedt-Duke, B., Lingaas, E., Norin, E., Saxerholt, H., Steinbakk, M. & Midtvedt, T. (1986). Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scandinavian Journal of Gastroenterology 21, 9971003.CrossRefGoogle ScholarPubMed
Key, F. B. & Mathers, J. C. (1987). Response of rat caecal metabolism to varying proportions of white and wholemeal breads. Proceedings of the Nutrition Society 46, 11A.Google Scholar
Key, F. B. & Mathers, J. C. (1988). Reponse of rat caecal metabolism to white and wholemeal breads given at two fat levels. Proceedings of the Nutrition Society 47, 101A.Google Scholar
Kindberg, C., Suttie, J. W., Uchida, K., Hirauchi, K. & Nakao, H. (1987). Menaquinone production and utilization in germ-free rats after inoculation with specific organisms. Journal of Nutrition 117, 10321035.CrossRefGoogle ScholarPubMed
Kornberg, A., Daft, F. S. & Sebrell, W. H. (1944). Mechanism of production of vitamin K deficiency in rats by sulfonamides. Journal of Biological Chemistry 155, 193200.CrossRefGoogle Scholar
Krasinski, S. D., Russell, R. M., Furie, B. C., Kruger, S. F., Jacques, P. F. & Furie, B. (1985). The prevalence of vitamin K deficiency in chronic gastrointestinal disorders. American Journal of Clinical Nutrition 41, 639643.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B. & Fuller, R. (1987). The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. Journal of Applied Bacteriology 63, 3945.CrossRefGoogle Scholar
Mallett, A. K., Bearne, C. A., Young, P. J., Rowland, I. R. & Berry, C. (1988). Influence of starches of low digestibility on the rat caecal microflora. British Journal of Nutrition 60, 597604.CrossRefGoogle ScholarPubMed
Mameesh, M. S. & Johnson, B. C. (1959). Production of dietary vitamin K deficiency in the rat. Proceedings of the Society for Experimental Biology and Medicine 101, 467468.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Finlayson, H. J. (1989). Manipulation of rat caecal metabolism by including Avoparcin and pectin in the diet. Proceedings of the Nutrition Society 48, 139A.Google Scholar
Matschiner, J. T. & Doisy, E. A. Jr (1965). Effect of dietary protein on the development of vitamin K deficiency in the rat. Journal of Nutrition 86, 9399.CrossRefGoogle ScholarPubMed
Moore, W. E. C. & Holdeman, L. V. (1975). Discussion of current bacteriological investigations of the relationships between intestinal flora, diet and colon cancer. Cancer Research 35, 34183420.Google Scholar
Moore, W. E. C., Moore, L. V. H., Cato, E. P., Wilkins, T. D. & Kornegay, E. T. (1987). Effect of high-fiber and high-oil diets on the faecal flora of swine. Applied and Environmental Microbiology 53, 16381644.CrossRefGoogle ScholarPubMed
National Research Council (1978). Nutrient Requirements of Laboratory Animals, no. 10, 3rd ed. Washington, DC: National Academy of Sciences.Google Scholar
O'Reilly, R. A. (1971). Vitamin K in hereditary resistance to oral anticoagulant drugs. American Journal of Physiology 221, 13271330.CrossRefGoogle ScholarPubMed
Passmore, R. & Eastwood, M. A. (1986). Davidson and Passmore Human Nutrition and Dietetics, 8th ed. Edinburgh: Churchill Livingstone.Google Scholar
Paul, B., Oxley, A., Brigham, K., Cox, T. & Hamilton, P. J. (1987). Factor II, VII, IX and X concentrations in patients receiving long-term warfarin. Journal of Clinical Pathology 40, 9498.CrossRefGoogle Scholar
Pineo, G. F., Gallus, A. S. & Hirst, J. (1973). Unexpected vitamin K deficiency in hospitalized patients. Canadian Medical Association Journal 109, 880883.Google ScholarPubMed
Ramotar, K., Conly, J. M., Chubb, H. & Louie, T. J. (1984). Production of menaquinones by intestinal anaerobes. Journul of Infectious Diseases 150, 213218.CrossRefGoogle ScholarPubMed
Ramotar, K., Krulicki, W., Gray, G. & Louie, T. (1988). Studies on intestinal and hepatic concentrations of menaquinone and hypoprothrombinemia in vitamin K1-deficient rats. In Current Advances in Vitamin K Research, pp. 493498 [Suttie, J. W., editor]. New York: Elsevier.Google Scholar
Salyers, A. A., Kuritza, A. P. & McCarthy, R. E. (1985). Influence of dietary fiber on the intestinal environment. Proceedings of the Society for Experimental Biology and Medicine 180, 415421.CrossRefGoogle ScholarPubMed
Shearer, M. J. (1986 a). Assay of K vitamins in tissues by high-performance liquid chromatography with special reference to ultraviolet detection. Methods in Enzymology 123, 235251.CrossRefGoogle ScholarPubMed
Shearer, M. J. (1986 b). Vitamins. In HPLC of Small Molecules: A Practical Approach, pp. 157219 [Lim, C. K., editor]. Oxford: IRL Press.Google Scholar
Shearer, M. J., Barkham, P., Rahim, S. & Stimmler, L. (1982). Plasma vitamin K1 in mothers and their newborn babies. Lancet ii, 460463.CrossRefGoogle Scholar
Suttie, J. W. (1985). Vitamin K. In The Fat-soluble Vitamins, pp. 225311 [Diplock, A. T., editor]. London: William Heinemann Ltd.Google Scholar
Thompson, A. (1970). Rat metabolism cage. Journal of the Institute of Animal Technicians 21, 1521.Google Scholar
Uchida, K. & Komeno, T. (1988). Relationships between dietary and intestinal vitamin K, clotting factor levels, plasma vitamin K and urinary Gla. In Current Advances in Vitamin K Research, pp. 477492 [Suttie, J. W., editor]. New York: Elsevier.Google Scholar
Von Kries, R., Shearer, M. J. & Göbel, U. (1988). Vitamin K in infancy. European Journal of Pediatrics 147, 106112.CrossRefGoogle ScholarPubMed
Wyatt, G. M., Bayliss, C. E. & Holcroft, J. D. (1986). A change in human faecal flora in response to inclusion of gum arabic in the diet. British Journal of Nutrition 55, 261266.CrossRefGoogle ScholarPubMed