Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T04:44:28.268Z Has data issue: false hasContentIssue false

Dietary factors affecting the maximum feed intake and the body composition of pre-ruminant kid goats of the Granadina breed

Published online by Cambridge University Press:  09 March 2007

M. R. Sanz Sampelayo
Affiliation:
Estación Experimental del Zaidín (Consejo Superior de Investigationes Científicas), Departamento de Nutrición Animal, Profesor Albareda 1, 18008 Granada, Spain
L. Allegretti
Affiliation:
Estación Experimental del Zaidín (Consejo Superior de Investigationes Científicas), Departamento de Nutrición Animal, Profesor Albareda 1, 18008 Granada, Spain
I. Ruiz Mariscal
Affiliation:
Estación Experimental del Zaidín (Consejo Superior de Investigationes Científicas), Departamento de Nutrición Animal, Profesor Albareda 1, 18008 Granada, Spain
F. Gil Extremera
Affiliation:
Estación Experimental del Zaidín (Consejo Superior de Investigationes Científicas), Departamento de Nutrición Animal, Profesor Albareda 1, 18008 Granada, Spain
J. Boza
Affiliation:
Estación Experimental del Zaidín (Consejo Superior de Investigationes Científicas), Departamento de Nutrición Animal, Profesor Albareda 1, 18008 Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An experiment was carried out with kid goats of the Granadina breed to identify the dietary factors affecting voluntary feed intake of the kid goat and those that additively could determine its body composition. The animals used were from birth to 61 d of age, fed ad lib. on different milk replacers containing 200, 240 and 280 g crude protein/kg DM and 200, 240 and 280 g fat/kg DM, thus giving nine dietary treatments. The utilization of the milk replacers and the animals' body composition were determined by balance and slaughter trials. There were significant positive effects of protein concentration of the milk replacers on component digestibilities, energy metabolizability, feed intake, empty-body weights, empty-body composition and protein and fat retention. The concentration of fat in the milk replacers also had a significant positive effect on the digestible and metabolizable energy concentration of the diets and on fat retention. The relationships existing between feed intake and diet composition (concentration of digestible protein, metabolizable energy and digestible protein:metabolizable energy ratio) as well as between empty-body composition or protein and fat retention and diet composition, were examined. From these it was deduced that feed intake was significantly influenced by the digestible protein concentration of the diets. The higher the digestible protein concentration the higher the feed intake up to a maximum digestible protein concentration value. As the digestible protein concentration of the diets was the dietary factor which significantly influenced feed intake, this also significantly influenced the body composition and the protein and fat retention. The protein concentration of the feed at which metabolizable energy intake in these animals would be greatest was estimated to be 347 g/kg DM.

Type
Feed intake in Granadina goat kids
Copyright
Copyright © The Nutrition Society 1995

References

Aziz, M. A. & Sharaby, M. A. (1993). Collinearity as a problem in predicting body weight from body dimensions of Najdi sheep in Saudi Arabia. Small Ruminant Research 12, 117124.CrossRefGoogle Scholar
Bas, P. & Morand-Fehr, P. (1987). Effect of goat milk or milk replacer intake on growth and carcass quality of kids. In Proceedings of the IV International Conference on Goats, Vol. 2, 1470. Brasilia: EMBRAPA.Google Scholar
Bas, P., Morand-Fehr, P., Schmidely, P. & Hervieu, J. (1987). Effect of dietary lipid supplementation on pre-and post-weaning growth and fat deposition in kids. Annales de Zootechnie 36, 339.Google Scholar
Bas, P., Schmidely, P., Morand-Fehr, P., Rouzeau, A. & Hervieu, J. (1992). Effect of level of energy intake on body composition in milk fed kids. Proceedings of the Meeting of the Subnetwork Nutrition. FAO Network of Cooperative Research on Sheep and Goats, p. 41 [Lindberg, J. E. editor]. Uppsala: Swedish University of Agricultural Science.Google Scholar
Blaxter, K. L. (1964). Los procesos productivos (The productive processes). In Metabolismo Energitico de los Rumiantes, pp. 159175 [Blaxter, K. L. editor]. Zaragoza: Acribia.Google Scholar
Boda, K., Koppel, J., Kuchar, S. & Kozes, S. (1984). Food intake control in suckling lambs. Canadian Journal of Animal Science 64,Suppl., 318319.CrossRefGoogle Scholar
Forbes, J. M. (1986). Dietary factors affecting intake. In The Voluntary Food Intake of Farm Animals, pp. 86113 [Forbes, J. M. editor]. London: Butterworths.CrossRefGoogle Scholar
Harris, R. B. S., Tobin, G. & Hervey, G. R. (1988). Voluntary feed intake of lean and obese Zucker rats in relation to dietary energy and nitrogen content. Journal of Nutrition 118, 503514.CrossRefGoogle Scholar
Havrevoll, O., Hadjipanayiotu, M., Sanz Sampelayo, M. R., Nitzan, Z. & Schmidely, P. (1991). Milk feeding systems of young goats. In Goat Nutrition pp. 259270 [Morand-Fehr, P. editor]. Wageningen: Pudoc.Google Scholar
Henning, W. P. (1982). High fat whey powder in calf milk replacer. The role of protein/energy ratios. South African Journul of Animal Science 12, 1520.Google Scholar
Jagusch, K. T., Duganzi, D. M., Kidd, G. T. & Church, S. M. (1983). Efficiency of goat milk utilization by milk-fed kids. New Zealand Journal of Agriculture Research 26, 443445.Google Scholar
Lara, L. (1991). Factores nutritivos y metabólicos que determinane el crecimiento y desarrollo del ganado caprino y ovino prerrumiante. Lactancia artificial (Nutritional and metabolic factors affecting the growth and development of pre-ruminant kid goats and lambs: artificial rearing). PhD Thesis. University of Granada, Spain.Google Scholar
Morand-Fehr, P., Bas, P., Rouzeau, A. & Hervieu, J. (1985). Development and characteristics of adipose deposits in male kids during growth from birth to weaning. Animal Production 41, 349357.Google Scholar
Moulin, P. (1983). Les corps gras animaux dans les aliments d'allaitement (Animal fats in milk replacers). Revue Française des Corps Gras 30, 287290.Google Scholar
Ørskov, E. R. (1982). Physiology of the ruminant stomach. Pre-ruminant nutrition. In Protein Nutrition in Ruminants, pp. 18 [Ørskov, E. R. editor]. London: Academic Press.Google Scholar
Parks, J. R. (1982). Ad libitum feeding and growth functions. In A Theory of Feeding and Growth of Animals, pp. 2537 [Parks, J. R. editor]. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Patureau-Mirand, P. (1975). Quelques aspects de la nutrition azotée du veau et de l'agneau préuminants (Different aspects of nitrogen nutrition azotée du veau et de I'agneau prérruminants (Different aspects of nitrogen nutrition in the pre-ruminant calf and lamb). Les Industries de I'Alimentation Animale 1, 2741.Google Scholar
Pearson, D. (1976). Milk products. In Laboratory Techniques in Food Analysis, pp. 145147 [Pearson, D. editor]. London: Butterworths.Google Scholar
Radcliffe, J. D. & Webster, A. J. F. (1978). Sex, body composition and regulation of food intake during growth in the Zucker rat. British Journal of Nutrition 39, 483492.CrossRefGoogle ScholarPubMed
Radcliffe, J. D. & Webster, A. J. F. (1979). The effect of varying the quality of dietary protein and energy on food intake and growth in the Zucker rat. British Journal of Nutrition 41, 111124.Google Scholar
Radostis, O. M. & Bell, J. M. (1970). Nutrition of the pre-ruminant dairy calf with special reference to the digestion and absorption of nutrients. A review. Canadian Journal of Animal Science 50, 405452.Google Scholar
Roy, J. H. B. (1980). The Calf. London: Butterworths.Google Scholar
Ruiz Mariscal, I., Gomez, A., Prieto, I., Sanz Sampelayo, M. R., Gil, F. & Boza, J. (1990). Nota sobre el diseño y análisis de un sistema de alimentación continuada para el cabrito lactante. (Note on the design and evaluation of a system for ad libitum feeding of the milk-fed goat kid). Investigación Agraria. Pruducción y Sanidad Animales 5, 4350.Google Scholar
Sanz Sampelayo, M. R., Muñoz, F. J., Anguita, T., Lara, L., Gil, F. & Boza, J. (1987). Utilización de calcio y fósforo por el cabrito de raza Granadina. Alimentación exclusivamente láctea (Calcium and phosphorus utilization by the milk-fed kid goat of the Granadina breed). Investigación Agraria. Producción y Sanidad Animales 2, 163172.Google Scholar
Sanz Sampelayo, M. R., Hernández-Clua, O. D., Naranjon, J. A., Gil, F. & Boza, J. (1990 a). Utilization of goat milk vs milk replacer for Granadina goat kids. Small Ruminant Research 3, 3746.CrossRefGoogle Scholar
Sanz Sampelayo, M. R., Ruiz, I., Gil, F. & Boza, J. (1990 b). Body composition of goat kids during sucking. Voluntary feed intake. British Journal of Nutrition 64, 611617.CrossRefGoogle ScholarPubMed
Soliman, H. S., Ørskov, E. R., Atkinson, T. & Smart, R. I. (1979). Utilization of partially hydrolysed starch in milk replacers by newborn lambs. Journal of Agricultural Sciences, Cambridge 92, 343349.CrossRefGoogle Scholar
Statgraphics (1991). User manual: Statistical Graphics System by Statistical Graphics Corporation. Rock-Ville, Maryland, USA.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1984). Principles and Procedures of Statistics. A Bionietrical Approach, 2nd ed. Singapore: McGraw-Hill Inc.Google Scholar
Ternouth, J. H., Roy, J. H. B. & Siddons, R. C. (1974). Concurrent studies of the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves. 2. The effects of addition of fat to skim milk and of severe preheating treatment of spray-dried skim-milk powder. British Journal of Nutrition 31, 1326.CrossRefGoogle ScholarPubMed
Ternouth, J. H., Roy, J. H. B., Thompson, S. Y., Toothill, J. & Gillies, C. M. (1975). Concurrent studies of the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves. 3. Further studies on the addition of fat to skim milk and use of non-milk proteins in milk-substitute diets. British Journal of Nutrition 33, 181196.CrossRefGoogle ScholarPubMed
Ternouth, J. H., Stobo, I. J. F., Roy, J. H. B. & Beattie, A. W. (1985). The effect of milk substitute concentration upon the intake, digestion and growth of calves. Animal Production 41, 151159.Google Scholar
Thivend, P., Toulec, R. & Guilloteau, P. (1980). Digestive adaptation in the pre-ruminant. In Digestive Physiology and Metabolism in Ruminants, pp. 561585 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.Google Scholar
Vermorel, M. (1975). Le métabolisme énergétique du veau et de l'agneau préruminant (The energy metabolism of pre-ruminant calf and lamb). Les Industries de I'Alimentation Animale 1, 926.Google Scholar
Vermorel, M., Bouvier, J. C. & Geay, Y. (1979). Energy utilization by growing calves: effects of age, milk intake and feeding level. In Energy Metabolism of Farm Animals, pp. 4953 [Mount, L. E. editor]. London: Butterworths.Google Scholar
Walker, D. M. (1973). Amino-acid imbalance and its effect on energy utilization in the milk-fed lamb. In Energy Metabolism of Farm Animals, pp. 7578 [Menke, H. H., Lanztsch, H. J. and Reichl, J. R., editors]. Stuttgart: Universität Hohemheim.Google Scholar
Walker, D. M. (1986). Body composition of animals during sucking and the immediate post-weaning period. Proceedings of the Nutrition Society 45, 8189.CrossRefGoogle ScholarPubMed
Webster, A. J. F. (1986). Factors affecting the body composition of growing and adult animals. Proceedings of the Nutrition Society 45, 4553.CrossRefGoogle ScholarPubMed
Williams, A. P. & Hewitt, D. (1979). The amino acid requirements of the preruminant calf. British Journal of Nutrition 41, 311319.Google Scholar