Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-l69ms Total loading time: 0.471 Render date: 2022-08-11T16:03:50.280Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The case for strategic international alliances to harness nutritional genomics for public and personal health

Published online by Cambridge University Press:  08 March 2007

Jim Kaput*
Affiliation:
Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
Jose M. Ordovas
Affiliation:
Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
Lynnette Ferguson
Affiliation:
National Centre for Research Excellence in Nutrigenomics, University of Auckland, Auckland, New Zealand
Ben van Ommen
Affiliation:
NuGO – TNO Quality of Life, Zeist, The Netherlands
Raymond L. Rodriguez
Affiliation:
Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA
Lindsay Allen
Affiliation:
USDA-ARS Western Human Nutrition Research Center at the University of California, Davis, CA 95616, USA
Bruce N. Ames
Affiliation:
Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA
Kevin Dawson
Affiliation:
Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA
Bruce German
Affiliation:
Department of Food Science and Technology, University of California, Davis, CA 95616, USA
Ronald Krauss
Affiliation:
Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA
Wasyl Malyj
Affiliation:
Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA
Michael C. Archer
Affiliation:
University of Alabama Center for Nutrient–Gene Interactions, University of Alabama, Birmingham, Alabama 35294-0005, USA
Stephen Barnes
Affiliation:
Laboratory of Nutrigenomic Medicine, Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
Amelia Bartholomew
Affiliation:
Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
Ruth Birk
Affiliation:
Department of Biotechnology Engineering, Ben-Gurion University at the Negev, Beer-Sheeva 84105, Israel
Peter van Bladeren
Affiliation:
Nestlé Research Center, Lausanne, Switzerland
Kent J. Bradford
Affiliation:
Seed Biotechnology Center, Plant Reproductive Biology, University of California, Davis, CA 95616, USA
Kenneth H. Brown
Affiliation:
Program in International Nutrition, Department of Nutrition University of California, Davis, CA 95616, USA
Rosane Caetano
Affiliation:
Department of Health Sciences, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Rua São Francisco, 501 - Bairro São Geraldo Ijuí - RS - Brasil
David Castle
Affiliation:
Department of Philosophy, University of Guelph, Ontario, Canada
Ruth Chadwick
Affiliation:
ESRC Centre for the Economic and Social Aspects of Genomics (CESAGen), Lancaster University, Lancaster LA1 4YG, UK
Stephen Clarke
Affiliation:
McNeil Nutritionals, New Brunswick, NJ, USA
Karine Clément
Affiliation:
INSERM ‘Avenir’ Nutrition dpt Hôtel-Dieu, EA3502, UMPC Paris 6, France
Craig A. Cooney
Affiliation:
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
Dolores Corella
Affiliation:
Genetic and Molecular Epidemiology Unit, School of Medicine, University of Valencia, Valencia, Spain
Ivana Beatrice Manica da Cruz
Affiliation:
Department of Health Sciences, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Rua São Francisco, 501 - Bairro São Geraldo Ijuí - RS – Brasil
Hannelore Daniel
Affiliation:
NuGO – Molecular Nutrition Unit, Technical University of Munich, Hochfeldweg 2, 85350 Freising-Weihenstephan, Germany
Troy Duster
Affiliation:
Department of Sociology, New York University, NY, NY 10003 and Institute for the Study of Social Change, University of California, Berkeley, CA 94720-5670, USA
Sven O. E. Ebbesson
Affiliation:
Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
Ruan Elliott
Affiliation:
Institute of Food Research, Norwich NR4 7UA, UK
Susan Fairweather-Tait
Affiliation:
Institute of Food Research, Norwich NR4 7UA, UK
Jim Felton
Affiliation:
Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Michael Fenech
Affiliation:
CSIRO Health Sciences and Nutrition, Adelaide SA, 5000, Australia
John W. Finley
Affiliation:
AM Todd, Montgomeryville, PA 18936, USA
Nancy Fogg-Johnson
Affiliation:
Life Science Alliance, Villanova, PA 19085, USA
Rosalynn Gill-Garrison
Affiliation:
Sciona, Inc., Boulder, CO 80302, USA
Michael J. Gibney
Affiliation:
NuGO – Nutrition Unit Department of Clinical Medicine, Trinity College, Dublin, Republic of Ireland
Peter J. Gillies
Affiliation:
Human Health Sciences, DuPont Nutrition & Health, Newark, DE, Centre of Excellence in Nutrigenomics, Penn State University, University Park, PA, USA
Jan-Ake Gustafsson
Affiliation:
Department of Medical Nutrition, Center for Biotechnology, Karolinska Instututet, Novum, SE-141 86, Huddinge, Sweden
John L. Hartman IV
Affiliation:
Department of Genetics, University of Alabama, Birmingham, Alabama 35294-0024, USA
Lin He
Affiliation:
Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai 200031, China
Jae-Kwan Hwang
Affiliation:
Department of Biotechnology, Yonsei University, Seoul, Korea
Jean-Philippe Jais
Affiliation:
Department of Biostatistics and Bioinformatics, Hôpital Necker Enfants Malades, Université Paris 5, Paris, France
Yangsoo Jang
Affiliation:
Department of Internal Medicine, Yonsei University, Seoul, Korea
Hans Joost
Affiliation:
NuGO – German Institute for Human Nutrition, Potsdam Rehbrücke, Germany
Claudine Junien
Affiliation:
Department of Genetics, Hôpital Necker Enfants Malades, Clinique Maurice Larny, Paris, 75743, France
Mitchell Kanter
Affiliation:
Cargill, Inc., Wayzata, MN 55305, USA
Warren A. Kibbe
Affiliation:
Center of Genetic Medicine, Center for Functional Genomics, Robert Lurie Comprehensive Cancer Center, NorthWestern University Medical School, Chicago, IL 60611, USA
Berthold Koletzko
Affiliation:
Dr von Hauner Children's Hospital, University of Munich, Germany
Bruce R. Korf
Affiliation:
Department of Genetics, University of Alabama, Birmingham, Alabama 35294-0024, USA
Kenneth Kornman
Affiliation:
Interleukin Genetics, Inc., Waltham, MA 02452, USA
David W. Krempin
Affiliation:
Nutrilite Division of Access Business Group, LLC, Buena Park, CA 90622, USA
Dominique Langin
Affiliation:
Obesity Research Unit, Institut Louis Bugnard, French Institute of Health and Medical Research (Inserm), Toulouse University Hospitals, Paul Sabatier University, 31059 Toulouse, France
Denis R. Lauren
Affiliation:
National Centre for Research Excellence in Nutrigenomics, University of Auckland, Auckland, New Zealand HortResearch, Ltd, Hamilton, New Zealand
Jong Ho Lee
Affiliation:
Department of Food and Nutrition, Yonsei University, Seoul, Korea
Gilbert A. Leveille
Affiliation:
Food Systems Design, Denville, NJ 07834, USA
Su-Ju Lin
Affiliation:
Department of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616, USA
John Mathers
Affiliation:
NuGO – Human Nutrition Research Centre, Newcastle University, UK
Michael Mayne
Affiliation:
Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, Prince Edward Island, Canada C1A 5T1
Warren McNabb
Affiliation:
National Centre for Research Excellence in Nutrigenomics, University of Auckland, Auckland, New Zealand AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
John A. Milner
Affiliation:
Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
Peter Morgan
Affiliation:
Rowett Research, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
Michael Muller
Affiliation:
NuGO – Dutch Innovative Cluster Nutrigenomics, Wageningen Centre for Food Science and Nutrition, Metabolism and Genomics, Wageningen University, Wageningen, The Netherlands
Yuri Nikolsky
Affiliation:
GeneGo, Inc., St Joseph, MI 49085, USA
Frans van der Ouderaa
Affiliation:
Unilever Corporate Research, Colworth House, Sharnbrook, Beds MK44 1PY, UK
Taesun Park
Affiliation:
Department of Food and Nutrition, Yonsei University, Seoul, Korea
Norma Pensel
Affiliation:
Instituto Tecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
Francisco Perez-Jimenez
Affiliation:
Hospital Universitario Reina Sofia, Unidad Lipidos & Arteriosclerosis, Cordoba, Spain
Kaisa Poutanen
Affiliation:
Food and Health Research Centre, University of Kuopio, Mediteknia, Box 1627, 70211 KUOPIO, Finland
Matthew Roberts
Affiliation:
Purina/Nestle, St Louis, MO, USA
Wim H.M. Saris
Affiliation:
NuGO – Nutrition and Toxicology Research Institute NUTRIM, University of Maastricht, The Netherlands
Gertrud Schuster
Affiliation:
Department of Nutrition, University of California, Davis, CA 95616-8669, USA
Andrew N. Shelling
Affiliation:
National Centre for Research Excellence in Nutrigenomics, University of Auckland, Auckland, New Zealand Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
Artemis P. Simopoulos
Affiliation:
The Center for Genetics, Nutrition and Health, Washington, DC 20009, USA
Sue Southon
Affiliation:
NuGO – Institute of Food Research, Norwich NR4 7UA, UK
E. Shyong Tai
Affiliation:
Department of Endocrinology, Singapore General Hospital, Singapore 169608, Republic of Singapore
Bradford Towne
Affiliation:
Department of Community Health, Wright State University School of Medicine, Dayton, OH 45401-0927, USA
Paul Trayhurn
Affiliation:
Obesity Biology Unit, Liverpool Centre for Nutritional Genomics, School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, UK
Ricardo Uauy
Affiliation:
Public Health Nutrition, London School of Hygiene and Tropical Medicine, London, and Instituto de Nutricion y Tecnologia de los Alimentos (INTA), University of Chile, Santiago, Chile
Willard J. Visek
Affiliation:
Department of Internal Medicine, University of Illinois College of Medicine, Urbana, IL 61821, USA
Craig Warden
Affiliation:
Neurobiology, Physiology, and Behavior Section of Division of Biological Sciences, University of California, Davis, CA 95616, USA
Rick Weiss
Affiliation:
Viocare Technologies, Inc., Princeton, NJ 08542, USA
John Wiencke
Affiliation:
Department of Epidemiology and Biostatistics and Division of Neuroepidemiology, University of California, San Francisco, CA 94143-0112, USA
Jack Winkler
Affiliation:
Food and Health Research, London N1 7AB, UK
George L. Wolff
Affiliation:
National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
Xi Zhao-Wilson
Affiliation:
BioMarker Pharmaceuticals, Inc., Campbell, CA 95008, USA
Jean-Daniel Zucker
Affiliation:
LIM&BIO, EPML-CNRS IAPuces, Universite Paris XIII, 74 rue Marcel Cachin 93017 Bobigny Cedex, France
*
Corresponding author: Dr Jim Kaput, fax +1 312 829 3357 email jkaput@uic.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene–nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient–genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.

Type
Horizons in Nutritional Science
Copyright
Copyright © The Nutrition Society 2005

Footnotes

This document is an outgrowth of the Bruce Ames International Symposium on Nutritional Genomics held at the University of California, Davis, CA on 22–24 October 2004. The statements and opinions expressed are those of symposium participants and others who are contributing to nutrigenomics or related research fields. The present paper is intended to stimulate discussion about the interplay of nutrition and genetics and the potential of nutrigenomics to improve global health.

References

Albrecht, U & Eichele, G (2003) The mammalian circadian clock. Curr Opin Genet Dev 13, 271277.CrossRefGoogle ScholarPubMed
American Diabetes Association (2005). Other medications for type 2 diabetes. http://www.diabetes.org/type-2-diabetes/oral-medications.jspGoogle Scholar
Austin, MA, Harding, SE & McElroy, CE (2003) Monitoring ethical, legal, and social issues in developing population genetic databases. Genet Med 5, 451457.CrossRefGoogle ScholarPubMed
Cardon, LR & Bell, JI (2001) Association study designs for complex diseases. Nat Rev Genet 2, 9199.CrossRefGoogle ScholarPubMed
Carlborg, O & Haley, CS (2004) Epistasis: too often neglected in complex trait studies?. Nat Rev Genet 5, 618625.CrossRefGoogle ScholarPubMed
Cech, TR & Rubin, GM (2004) Nurturing interdisciplinary research. Nat Struct Mol Biol 11, 11661169.CrossRefGoogle ScholarPubMed
Cheverud, JM, Ehrich, TH, Hrbek, T, Kenney, JP, Pletscher, LS & Semenkovich, CF (2004) Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains. Diabetes 53, 33283336.CrossRefGoogle ScholarPubMed
Cooney, CA, Dave, AA & Wolff, GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132, 2393S2400S.CrossRefGoogle ScholarPubMed
Corella, D & Ordovas, JM (2004) The metabolic syndrome: a crossroad for genotype-phenotype associations in atherosclerosis. Curr Atheroscler Rep 6, 186196.CrossRefGoogle ScholarPubMed
Davis, CD & Milner, J (2004) Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res 551, 5164.CrossRefGoogle ScholarPubMed
Devries, JW (2004) Dietary fiber: the influence of definition on analysis and regulation. J AOAC Int 87, 682706.Google ScholarPubMed
Dreon, DM, Fernstrom, HA, Williams, PT & Krauss, RM (1999) A very-low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 69, 411418.CrossRefGoogle Scholar
Ferguson, LR & Harris, PJ (2003) The dietary fibre debate: more food for thought. Lancet 361, 14871488.CrossRefGoogle ScholarPubMed
Fleeman, LM & Rand, JS (2001) Management of canine diabetes. Vet Clin North Am Small Anim Pract 31, 855880.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization (2005). Food Composition: Publications. http://www.fao.org/infoods/publications_en.stmGoogle Scholar
Francis, GA, Fayard, E, Picard, F & Auwerx, J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65, 261311.CrossRefGoogle Scholar
Freedman, ML, Reich, D & Penney, KL (2004) Assessing the impact of population stratification on genetic association studies. Nat Genet 36, 388393.CrossRefGoogle ScholarPubMed
Gillies, PJ (2003) Nutrigenomics: the Rubicon of molecular nutrition. J Am Diet Assoc 103, S50S55.CrossRefGoogle ScholarPubMed
Gleeson, M, Nieman, DC & Pedersen, BK (2004) Exercise, nutrition and immune function. J Sports Sci 22, 115125.CrossRefGoogle ScholarPubMed
Haga, SB, Khoury, MJ & Burke, W (2003) Genomic profiling to promote a healthy lifestyle: not ready for prime time. Nat Genet 34, 347350.CrossRefGoogle ScholarPubMed
Hartman, JL, Garvik, B & Hartwell, L (2001) Principles for the buffering of genetic variation. Science 291, 10011004.CrossRefGoogle ScholarPubMed
Hirschhorn, JN, Lohmueller, K, Byrne, E & Hirschhorn, K (2002) A comprehensive review of genetic association studies. Genet Med 4, 4561.CrossRefGoogle ScholarPubMed
Hribal, ML, Oriente, F & Accili, D (2002) Mouse models of insulin resistance. Am J Physiol 282, E977E981.Google ScholarPubMed
International Hapmap Consortium (2003) The International HapMap Project. Nature 426, 789796.CrossRefGoogle Scholar
International HapMap Consortium (2004) Integrating ethics and science in the International HapMap Project. Nat Rev Genet 5, 467475.CrossRefGoogle Scholar
Irwin, M (2002) Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun 16, 503512.CrossRefGoogle ScholarPubMed
Irwin, M, Clark, C, Kennedy, B, Christian, Gillin J & Ziegler, M (2003) Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain Behav Immun 17, 365372.CrossRefGoogle ScholarPubMed
Jackson Laboratory (2005). The Jackson Laboratory – Advancing Research in Human Health. http://www.jax.orgGoogle Scholar
Jacobs, MN & Lewis, DF (2002) Steroid hormone receptors and dietary ligands: a selected review. Proc Nutr Soc 61, 105122.CrossRefGoogle ScholarPubMed
Jimenez-Sanchez, G, Childs, B & Valle, D (2001) Human disease genes. Nature 409, 853855.CrossRefGoogle ScholarPubMed
Jorgenson, E, Tang, H & Gadde, M (2005) Ethnicity and human genetic linkage maps. Am J Hum Genet 76, 276290.CrossRefGoogle ScholarPubMed
Kaput, J (2004) Diet-disease gene interactions. Nutrition 20, 2631.CrossRefGoogle ScholarPubMed
Kaput, J, Klein, KG, Reyes, EJ, Kibbe, WA, Cooney, CA, Jovanovic, B, Visek, WJ & Wolff, GL (2004) Identification of genes contributing to the obese yellow Avy phenotype: caloric restriction, genotype, diet x genotype interactions. Physiol Genomics 18, 316324.CrossRefGoogle Scholar
Kaput, J & Rodriguez, RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics 16, 166177.CrossRefGoogle ScholarPubMed
Keita, SO, Kittles, RA, Royal, CD, Bonney, GE, Furbert-Harris, P, Dunston, GM & Rotimi, CN (2004) Conceptualizing human variation. Nat Genet 36, Suppl. 1, S17S20.CrossRefGoogle ScholarPubMed
Kimura, M, Umegaki, K, Higuchi, M, Thomas, P & Fenech, M (2004) Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 134, 4856.CrossRefGoogle ScholarPubMed
Lan, H, Rabaglia, ME, Stoehr, JP, Nadler, ST, Schueler, KL, Zou, F, Yandell, BS & Attie, AD (2003) Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 52, 688700.CrossRefGoogle ScholarPubMed
Lander, E & Kruglyak, L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11, 241247.CrossRefGoogle ScholarPubMed
Lin, SJ & Guarente, L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15, 241246.CrossRefGoogle ScholarPubMed
Lin, SJ, Kaeberlein, M, Andalis, AA, Sturtz, LA, Defossez, PA, Culotta, VC, Fink, GR & Guarente, L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344348.CrossRefGoogle ScholarPubMed
Linder, CC (2001) The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim (NY) 30, 3439.Google ScholarPubMed
Lohmueller, KE, Pearce, CL, Pike, M, Lander, ES & Hirschhorn, JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33, 177182.CrossRefGoogle ScholarPubMed
Loktionov, A (2003) Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). J Nutr Biochem 14, 426451.CrossRefGoogle Scholar
Loktionov, A, Scollen, S, McKeown, N & Bingham, SA (2000) Gene-nutrient interactions: dietary behaviour associated with high coronary heart disease risk particularly affects serum LDL-cholesterol in apolipoprotein E epsilon4-carrying free-living individuals. Br J Nutr 84, 885890.Google ScholarPubMed
Maschke, KJ & Murray, TH (2004) Ethical issues in tissue banking for research: the prospects and pitfalls of setting international standards. Theor Med Bioeth 25, 143155.CrossRefGoogle ScholarPubMed
Moore, JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56, 7382.CrossRefGoogle ScholarPubMed
Muller, M & Kersten, S (2003) Opinion: Nutrigenomics: goals and strategies. Nat Rev Genet 4, 315322.CrossRefGoogle Scholar
Naciff, JM, Jump, ML, Torontali, SM, Carr, GJ, Tiesman, JP, Overmann, GJ & Daston, GP (2002) Gene expression profile induced by 17alpha-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicol Sci 68, 184199.CrossRefGoogle ScholarPubMed
National Institute of General Medical Services, (2005) NIGMS – Research Funding: Goals for the Pharmacogenetics Research Network and PharmGKB. http://www.nigms.nih.gov/pharmacogenetics/goals.htmlGoogle Scholar
Nieman, DC, Davis, JM & Brown, VA (2004) Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96, 12921298.CrossRefGoogle ScholarPubMed
Nieman, DC, Davis, JM, Henson, DA (2003 a) Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol 94, 19171925.CrossRefGoogle ScholarPubMed
Nieman, DC, Dumke, CI, Henson, DA, McAnulty, SR, McAnulty, LS, Lind, RH & Morrow, JD (2003 b) Immune and oxidative changes during and following the Western States Endurance Run. Int J Sports Med 24, 541547.Google ScholarPubMed
Ordovas, JM (2004) The quest for cardiovascular health in the genomic era: nutrigenetics and plasma lipoproteins. Proc Nutr Soc 63, 145152.CrossRefGoogle ScholarPubMed
Ordovas, JM & Corella, D (2004) Nutritional genomics. Annu Rev Genomics Hum Genet 5, 71118.CrossRefGoogle ScholarPubMed
Pandya, RJ, Solomon, G, Kinner, A & Balmes, JR (2002) Diesel exhaust and asthma: hypotheses and molecular mechanisms of action. Environ Health Perspect 110, Suppl. 1, 103112.CrossRefGoogle ScholarPubMed
Park, EI, Paisley, EA, Mangian, HJ, Swartz, DA, Wu, MX, O'Morchoe, PJ, Behr, SR, Visek, WJ & Kaput, J (1997) Lipid level and type alter stearoyl CoA desaturase mRNA abundance differently in mice with distinct susceptibilities to diet-influenced diseases. J Nutr 127, 566573.CrossRefGoogle ScholarPubMed
Parra, EJ, Kittles, RA & Shriver, MD (2004) Implications of correlations between skin color and genetic ancestry for biomedical research. Nat Genet 36, Suppl. 1, S54S60.CrossRefGoogle ScholarPubMed
Pereira, MA, Weggemans, RM, Jacobs, DR Jr, Hannan, PJ, Zock, PL, Ordovas, JM & Katan, MB (2004) Within-person variation in serum lipids: implications for clinical trials. Int J Epidemiol 33, 534541.CrossRefGoogle ScholarPubMed
Pharmacogenetics and Pharmacogenomics Knowledge Base (2005) PharmGKB. http://www.pharmgkb.org/Google Scholar
Pianetti, S, Guo, S, Kavanagh, KT & Sonenshein, GE (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62, 652655.Google ScholarPubMed
Pike, AC, Brzozowski, AM, Hubbard, RE, Bonn, T, Thorsell, AG, Engstrom, O, Ljunggren, J, Gustafsson, JA & Carlquist, M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18, 46084618.CrossRefGoogle Scholar
Prabhakar, NR & Peng, YJ (2004) Peripheral chemoreceptors in health and disease. J Appl Physiol 96, 359366.CrossRefGoogle ScholarPubMed
Program for Genetic Interaction (2005) PROGENI Network – NHLBI Gene by Environment Interaction Studies. http://www.biostat.wustl.edu/progeni/Google Scholar
Rebbeck, TR, Spitz, M & Wu, X (2004) Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet 5, 589597.CrossRefGoogle ScholarPubMed
Redwine, L, Hauger, RL, Gillin, JC & Irwin, M (2000) Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab 85, 35973603.Google ScholarPubMed
Reich, DE & Goldstein, DB (2001) Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 20, 416.3.0.CO;2-T>CrossRefGoogle Scholar
Reifsnyder, PC, Churchill, G & Leiter, EH (2000) Maternal environment and genotype interact to establish diabesity in mice. Genome Res 10, 15681578.CrossRefGoogle ScholarPubMed
Risch, N (1997) Evolving methods in genetic epidemiology II. Genetic linkage from an epidemiologic perspective. Epidemiol Rev 19, 2432.CrossRefGoogle ScholarPubMed
Rossmeisl, M, Rim, JS, Koza, RA & Kozak, LP (2003) Variation in type 2 diabetes – related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52, 19581966.CrossRefGoogle ScholarPubMed
Sachs, JD (2005) The End of Poverty. Economic Possibilities for Our Time. New York: The Penguin Press.Google Scholar
Seeley, RJ, Drazen, DL & Clegg, DJ (2004) The critical role of the melanocortin system in the control of energy balance. Annu Rev Nutr 24, 133149.CrossRefGoogle ScholarPubMed
Serhan, CN, Clish, CB, Brannon, J, Colgan, SP, Chiang, N & Gronert, K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192, 11971204.CrossRefGoogle ScholarPubMed
Simopoulos, AP & Ordovas, JM (2004) Nutrigenetics and Nutrigenomics. Basel: Karger.CrossRefGoogle Scholar
Stoehr, JP, Nadler, ST, Schueler, KL, Rabaglia, ME, Yandell, BS, Metz, SA & Attie, AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49, 19461954.CrossRefGoogle ScholarPubMed
Tai, ES & Tan, CE (2004) Genes, diet and serum lipid concentrations: lessons from ethnically diverse populations and their relevance to coronary heart disease in Asia. Curr Opin Lipidol 15, 512.CrossRefGoogle Scholar
Tang, H, Quertermous, T & Rodriguez, B (2005) Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76, 268275.CrossRefGoogle Scholar
Tirona, RG, Leake, BF, Podust, LM & Kim, RB (2004) Identification of amino acids in rat pregnane X receptor that determine species-specific activation. Mol Pharmacol 65, 3644.CrossRefGoogle ScholarPubMed
Tomita, M, Irwin, KI, Xie, ZJ & Santoro, TJ (2002) Tea pigments inhibit the production of type 1 (T(H1)) and type 2 (T(H2)) helper T cell cytokines in CD4(+) T cells. Phytother Res 16, 3642.CrossRefGoogle Scholar
University of California, Davis, (2005) Program in International Nutrition. http://nutrition.ucdavis.edu/pin/Google Scholar
Van Ommen, B & Stierum, R (2002) Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol 13, 517521.CrossRefGoogle ScholarPubMed
Waterston, RH, Lindblad-Toh, K & Birney, E (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520562.Google ScholarPubMed
Watkins, RE, Maglich, JM, Moore, LB, Wisely, GB, Noble, SM, Davis-Searles, PR, Lambert, MH, Kliewer, SA & Redinbo, MR (2003) 2·1 A crystal structure of human PXR in complex with the St. John's wort compound hyperforin. Biochemistry 42, 14301438.CrossRefGoogle ScholarPubMed
You have Access
96
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The case for strategic international alliances to harness nutritional genomics for public and personal health
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The case for strategic international alliances to harness nutritional genomics for public and personal health
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The case for strategic international alliances to harness nutritional genomics for public and personal health
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *