Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-24T12:15:12.375Z Has data issue: false hasContentIssue false

Biotin deficiency and susceptibility to fatty liver and kidney syndrome in broiler chicks: reduced 6-phosphofructokinase (EC 2.7.1.11) activity but normal fructose 2,6-bisphosphate content in birds with hepatomegaly

Published online by Cambridge University Press:  09 March 2007

D. W. Bannister
Affiliation:
Agricultural and Food Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS
D. I. Sales
Affiliation:
Agricultural and Food Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS
Alison Lee
Affiliation:
Agricultural and Food Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In two separate experiments, using different strains, broiler chicks were reared on either a commercial-type chick mash (control) or a fatty liver and kidney syndrome (FLKS)-inducing diet.

2. In Expt a, chicks were killed on day 29 and in Expt b, on day 32. Body-weights and liver weights were measured, and values from those given the control ration used to construct a hepatomegaly index by employing a variant of linear discriminant analysis.

3. Application of the index to FLKS birds revealed a statistically significant bimodal distribution of liver size.

4. The birds with enlarged livers (high index) also possessed metabolic abnormalities in that 6- phosphofructokinase (EC 2. 7. 1. 11; PFK-1) activity (measured at low substrate concentration) was depressed despite the presence of normal, or even slightly elevated fructose 2,6-bisphosphate concentration.

5. This indicates the presence of an uncharacterized regulatory mechanism for PFK- 1 in FLKS-susceptible birds.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Balnave, D., Cumming, R. B. & Sutherland, T. M. (1977). British Journal of Nutrition 38, 319328.CrossRefGoogle Scholar
Bannister, D. W. (1984). International Journal Biochemistry 16, 895899.CrossRefGoogle Scholar
Bannister, D. W., Lee, A., Whitehead, C. C. & Griffin, H. D. (1984). International Journal of Biochemistry 16, 13011305.CrossRefGoogle Scholar
Bannister, D. W., O'Neill, I. E. & Whitehead, C. C. (1983). British Journal of Nutrition 50, 291302.CrossRefGoogle Scholar
Blair, R., Whitehead, C. C. & Teague, P. W. (1975). Research in Veterinary Science 18, 7681.CrossRefGoogle Scholar
Bolton, W. & Blair, R. (1974). Poultry Nutrition, Bulletin no. 174, p. 128. London: H.M. Stationery Office.Google Scholar
Claus, T. H. & Pilkis, S. J. (1982). Biochemical and Biophysical Research Communications 109, 664668.CrossRefGoogle Scholar
Fisher, R. A. (1936). Annals of Ergenics 7, 179188.CrossRefGoogle Scholar
Hers, H.-G. & Van Schaftingen, E. (1982). Biochemical Journal 206, 112.CrossRefGoogle Scholar
Hood, R. L., Johnson, A. R., Fogarty, A. C. & Pearson, J. A. (1976). Australian Journal of Biological Science 29, 429441.CrossRefGoogle Scholar
Hue, L. & Van Der Werve, G. (1982). FEBS Letters 145, 263266.CrossRefGoogle Scholar
Hue, L., Van Der Werve, G. & Jeanrenaud, B. (1983). Biochemical Journal 214, 10191022.CrossRefGoogle Scholar
Kellet, G. L. & Robertson, J. P. (1984). Biochemical Journal 220, 601604.CrossRefGoogle Scholar
Kitajima, S., Sakakibara, R. & Uyeda, K. (1983). Journal of Biological Chemistry 258, 1329213298.CrossRefGoogle Scholar
Kruep, D. A. & Dunaway, G. A. (1984 a). Archives of Biochemistry and Biophysics 235, 504511.CrossRefGoogle Scholar
Kruep, D. A. & Dunaway, G. A. (1984 b). Archives of Biochemistry and Biophysics 235, 512520.CrossRefGoogle Scholar
Lindsay, D. W. & Pethick, D. W. (1983). In Dynamic Biochemistry of Animal Production: World Animal Science, vol. A3, pp. 431480 [Riis, P. M., editor]. Amsterdam: Elsevier.Google Scholar
Pearson, J., Johnson, A. R., Hood, R. L. & Fogerty, A. C. (1976). Australian Journal of Biological Science 29, 419428.CrossRefGoogle Scholar
Silverman, B. W. (1981). Journal of the Royal Statistical Society, Series B 43, 9799.Google Scholar
Van Schaftingen, E. & Hers, H.-G. (1981). Proceedings of the National Academy of Sciences, USA 78, 28612863.CrossRefGoogle Scholar
Van Schaftingen, E., Hue, L. & Hers, H.-G. (1980). Biochemical Journal 192, 897901.CrossRefGoogle Scholar
Van Schaftingen, E., Ledener, B., Bartrons, R. & Hers, H.-G. (1982). European Journal of Biochemistry 129, 191195.CrossRefGoogle Scholar
Whitehead, C. C. (1975). Research in Veterinary Science 18, 3235.CrossRefGoogle Scholar
Whitehead, C. C. (1978). In Handbook Series in Nutrition and Food, Sect. E, vol. 2, pp. 6593 [Rechagle, M., editor]. Florida: CRC Press Inc.Google Scholar
Whitehead, C. C., Bannister, D. W. & Cleland, M. E. (1978). British Journal of Nutrition 40, 221234.CrossRefGoogle Scholar
Whitehead, C. C., Bannister, D. W., Evans, A. J., Siller, W. G. & Wright, P. A. L.. (1976). British Journal of Nutrition 35, 115125.CrossRefGoogle Scholar
Whitehead, C. C. & Blair, R. (1974). Research in Veterinary Science 17, 8690.CrossRefGoogle Scholar
Whitehead, C. C. & Blair, R. (1976). Research in Veterinary Science 21, 141145.CrossRefGoogle Scholar