Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-clkrv Total loading time: 0.589 Render date: 2022-01-18T21:21:48.831Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Which anthropometric measurement is better for predicting survival of patients with cancer cachexia?

Published online by Cambridge University Press:  30 July 2021

Yi-Zhong Ge
Affiliation:
The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, People’s Republic of China Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Guo-Tian Ruan
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Kang-Ping Zhang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Meng Tang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Qi Zhang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Xi Zhang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Meng-Meng Song
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Xiao-Wei Zhang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Ming Yang
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
Xian Shen
Affiliation:
The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, People’s Republic of China
Hong-Xia Xu
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing 400042, People’s Republic of China
Chun-Hua Song
Affiliation:
Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
Chang Wang
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin 130021, People’s Republic of China
Han-Ping Shi*
Affiliation:
The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, People’s Republic of China Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People’s Republic of China Department of Oncology, Capital Medical University, Beijing 100038, People’s Republic of China Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, People’s Republic of China
*
* Corresponding author: Dr Han-Ping Shi, email shihp@ccmu.edu.cn

Abstract

No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; P interaction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; P interaction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work and share first authorship.

References

Baracos, VE, Martin, L, Korc, M, et al. (2018) Cancer-associated cachexia. Nat Rev Dis Primers 4, 17105.CrossRefGoogle ScholarPubMed
Argilés, JM, Busquets, S, Stemmler, B, et al. (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14, 754762.CrossRefGoogle ScholarPubMed
Schmidt, SF, Rohm, M, Herzig, S, et al. (2018) Cancer cachexia: more than skeletal muscle wasting. Trends Cancer 4, 849860.CrossRefGoogle ScholarPubMed
Fouladiun, M, Korner, U, Bosaeus, I, et al. (2005) Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103, 21892198.CrossRefGoogle ScholarPubMed
Tsoli, M, Moore, M, Burg, D, et al. (2012) Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 72, 43724382.CrossRefGoogle ScholarPubMed
Murphy, KT (2016) The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 310, H466H477.CrossRefGoogle ScholarPubMed
Reddel, CJ, Allen, JD, Ehteda, A, et al. (2017) Increased thrombin generation in a mouse model of cancer cachexia is partially interleukin-6 dependent. J Thrombosis Haemostasis 15, 477486.CrossRefGoogle Scholar
Peyta, L, Jarnouen, K, Pinault, M, et al. (2015) Regulation of hepatic cardiolipin metabolism by TNFalpha: implication in cancer cachexia. Biochim Biophys Acta 1851, 14901500.CrossRefGoogle ScholarPubMed
Talbert, EE, Cuitino, MC, Ladner, KJ, et al. (2019) Modeling human cancer-induced cachexia. Cell Rep 28, 16121622.e1614.CrossRefGoogle ScholarPubMed
Arends, J, Baracos, V, Bertz, H, et al. (2017) ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr 36, 11871196.CrossRefGoogle ScholarPubMed
Schneider, SM & Correia, M (2020) Epidemiology of weight loss, malnutrition and sarcopenia: a transatlantic view. Nutrition 69, 110581.CrossRefGoogle ScholarPubMed
Jensen, GL, Compher, C, Sullivan, DH, et al. (2013) Recognizing malnutrition in adults. J Paren Enteral Nutr 37, 802807.CrossRefGoogle ScholarPubMed
Gunalay, S, Ozturk, YK, Akar, H, et al. (2018) The relationship between malnutrition and quality of life in haemodialysis and peritoneal dialysis patients. Rev Assoc Med Bras 64, 845852.CrossRefGoogle ScholarPubMed
Cederholm, T, Jensen, GL, Correia, M, et al. (2019) GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 10, 207217.CrossRefGoogle Scholar
Shachar, SS, Williams, GR, Muss, HB, et al. (2016) Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer 57, 5867.CrossRefGoogle ScholarPubMed
Xu, H, Song, C, Wang, C, et al. (2020) Investigation on nutrition status and clinical outcome of patients with common cancers in Chinese patients: a multicenter prospective study protocol. Int J Clin Trials 7, 1.CrossRefGoogle Scholar
Amin, MB, Greene, FL, Edge, SB, et al. (2017) The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin 67, 9399.CrossRefGoogle ScholarPubMed
Fearon, K, Strasser, F, Anker, SD, et al. (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489495.CrossRefGoogle Scholar
Antonelli Incalzi, R, Landi, F, Cipriani, L, et al. (1996) Nutritional assessment: a primary component of multidimensional geriatric assessment in the acute care setting. J Am Geriatr Soc 44, 166174.CrossRefGoogle ScholarPubMed
Aaronson, NK, Ahmedzai, S, Bergman, B, et al. (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85, 365376.CrossRefGoogle Scholar
Bueno, H, Ross, JS, Wang, Y, et al. (2010) Trends in length of stay and short-term outcomes among Medicare patients hospitalized for heart failure, 1993–2006. JAMA 303, 21412147.CrossRefGoogle ScholarPubMed
Zhang, X, Tang, M, Zhang, Q, et al. (2021) The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. Clin Nutr 40, 12241232.CrossRefGoogle ScholarPubMed
(1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 854, 1452.Google Scholar
Fluss, R, Faraggi, D & Reiser, B (2005) Estimation of the Youden Index and its associated cutoff point. Biom J 47, 458472.CrossRefGoogle ScholarPubMed
Keller, U (2019) Nutritional laboratory markers in malnutrition. J Clin Med 8, 775.CrossRefGoogle ScholarPubMed
Hajian-Tilaki, K (2018) The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res 27, 23742383.CrossRefGoogle ScholarPubMed
Apfel, CC, Kranke, P, Greim, CA, et al. (2001) What can be expected from risk scores for predicting postoperative nausea and vomiting? Br J Anaesth 86, 822827.CrossRefGoogle ScholarPubMed
Manguso, F, D’Ambra, G, Menchise, A, et al. (2005) Effects of an appropriate oral diet on the nutritional status of patients with HCV-related liver cirrhosis: a prospective study. Clin Nutr 24, 751759.CrossRefGoogle ScholarPubMed
Aatif, T, Hassani, K, Alayoud, A, et al. (2013) Parameters to assess nutritional status in a Moroccan hemodialysis cohort. Arab J Nephrol Transplant 6, 8997.Google Scholar
Wijnhoven, HA, van Bokhorst-de van der Schueren, MA, Heymans, MW, et al. (2010) Low mid-upper arm circumference, calf circumference, and body mass index and mortality in older persons. J Gerontol A Biol Sci Med Sci 65, 11071114.CrossRefGoogle ScholarPubMed
da Silva, JR, Wiegert, EVM, Oliveira, L, et al. (2019) Different methods for diagnosis of sarcopenia and its association with nutritional status and survival in patients with advanced cancer in palliative care. Nutrition 60, 4852.CrossRefGoogle ScholarPubMed
Renehan, AG, Tyson, M, Egger, M, et al. (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569578.CrossRefGoogle ScholarPubMed
Antonopoulos, AS & Tousoulis, D (2017) The molecular mechanisms of obesity paradox. Cardiovasc Res 113, 10741086.CrossRefGoogle ScholarPubMed
Martin, L, Birdsell, L, Macdonald, N, et al. (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31, 15391547.CrossRefGoogle ScholarPubMed
Sala, A, Rossi, E, Antillon, F, et al. (2012) Nutritional status at diagnosis is related to clinical outcomes in children and adolescents with cancer: a perspective from Central America. Eur J Cancer 48, 243252.CrossRefGoogle ScholarPubMed
Hurtado-López, EF, Larrosa-Haro, A, Vásquez-Garibay, EM, et al. (2007) Liver function test results predict nutritional status evaluated by arm anthropometric indicators. J Pediatr Gastroenterol Nutr 45, 451457.CrossRefGoogle ScholarPubMed
Zhuang, CL, Zhang, FM, Li, W, et al. (2020) Associations of low handgrip strength with cancer mortality: a multicentre observational study. J Cachexia Sarcopenia Muscle 11, 14761486.CrossRefGoogle ScholarPubMed
Das, SK, Eder, S, Schauer, S, et al. (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233238.CrossRefGoogle ScholarPubMed
Simpson, SJ, Le Couteur, DG, Raubenheimer, D, et al. (2017) Dietary protein, aging and nutritional geometry. Ageing Res Rev 39, 7886.CrossRefGoogle ScholarPubMed
Vellas, B, Guigoz, Y, Garry, PJ, et al. (1999) The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 15, 116122.CrossRefGoogle ScholarPubMed
Juakiem, W, Torres, DM & Harrison, SA (2014) Nutrition in cirrhosis and chronic liver disease. Clin Liver Dis 18, 179190.CrossRefGoogle ScholarPubMed
Mathew, S, Abraham, G, Vijayan, M, et al. (2015) Body composition monitoring and nutrition in maintenance hemodialysis and CAPD patients – a multicenter longitudinal study. Ren Fail 37, 6672.CrossRefGoogle ScholarPubMed
O’Brien, SJ & Omer, E (2019) Chronic pancreatitis and nutrition therapy. Nutr Clin Pract 34, S13S26.CrossRefGoogle ScholarPubMed
Sinclair, AJ, Abdelhafiz, AH & Rodríguez-Mañas, L (2017) Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J Diabetes Complication 31, 14651473.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ge et al. supplementary material

Ge et al. supplementary material

Download Ge et al. supplementary material(File)
File 135 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Which anthropometric measurement is better for predicting survival of patients with cancer cachexia?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Which anthropometric measurement is better for predicting survival of patients with cancer cachexia?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Which anthropometric measurement is better for predicting survival of patients with cancer cachexia?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *