Hostname: page-component-588bc86c8c-npktt Total loading time: 0 Render date: 2023-12-01T01:25:40.578Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Timing of gestational weight gain in association with birth weight outcomes: a prospective cohort study

Published online by Cambridge University Press:  18 July 2022

Lixia Lin
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Xi Chen
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Chunrong Zhong
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Li Huang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Qian Li
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Xu Zhang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Meng Wu
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Huanzhuo Wang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Sen Yang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Xiyu Cao
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Guoping Xiong
Affiliation:
Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Wuhan, Hubei, People’s Republic of China
Guoqiang Sun
Affiliation:
Department of Integrated Traditional & Western Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, People’s Republic of China
Xuefeng Yang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Liping Hao
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
Nianhong Yang*
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
*
*Corresponding author: Nianhong Yang, email zynh@mails.tjmu.edu.cn

Abstract

Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LifeCycle Project-Maternal Obesity and Childhood Outcomes Study Group, Voerman, E, Santos, S, et al. (2019) Association of gestational weight gain with adverse maternal and infant outcomes. JAMA 321, 17021715.CrossRefGoogle Scholar
Kominiarek, MA, Saade, G, Mele, L, et al. (2018) Association between gestational weight gain and perinatal outcomes. Obstet Gynecol 132, 875881.CrossRefGoogle ScholarPubMed
Ukah, UV, Bayrampour, H, Sabr, Y, et al. (2019) Association between gestational weight gain and severe adverse birth outcomes in Washington State, US: a population-based retrospective cohort study, 2004–2013. PLoS Med 16, e1003009.CrossRefGoogle Scholar
Nehring, I, Schmoll, S, Beyerlein, A, et al. (2011) Gestational weight gain and long-term postpartum weight retention: a meta-analysis. Am J Clin Nutr 94, 12251231.CrossRefGoogle ScholarPubMed
Widen, EM, Whyatt, RM, Hoepner, LA, et al. (2015) Excessive gestational weight gain is associated with long-term body fat and weight retention at 7 years postpartum in African American and Dominican mothers with underweight, normal, and overweight prepregnancy BMI. Am J Clin Nutr 102, 14601467.CrossRefGoogle Scholar
Oken, E, Taveras, EM, Kleinman, KP, et al. (2007) Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol 196, 322.e321–328.CrossRefGoogle ScholarPubMed
Hinkle, SN, Sharma, AJ, Swan, DW, et al. (2012) Excess gestational weight gain is associated with child adiposity among mothers with normal and overweight prepregnancy weight status. J Nutr 142, 18511858.CrossRefGoogle ScholarPubMed
Feghali, MN, Catov, JM, Zantow, E, et al. (2019) Timing of gestational weight gain and adverse perinatal outcomes in overweight and obese women. Obstet Gynecol 133, 962970.CrossRefGoogle ScholarPubMed
Broskey, NT, Wang, P, Li, N, et al. (2017) Early pregnancy weight gain exerts the strongest effect on birth weight, posing a critical time to prevent childhood obesity. Obesity 25, 15691576.CrossRefGoogle ScholarPubMed
Sridhar, SB, Xu, F & Hedderson, MM (2016) Trimester-specific gestational weight gain and infant size for gestational age. PLoS One 11, e0159500.CrossRefGoogle ScholarPubMed
Brown, JE, Murtaugh, MA, Jacobs, DR Jr, et al. (2002) Variation in newborn size according to pregnancy weight change by trimester. Am J Clin Nutr 76, 205209.CrossRefGoogle ScholarPubMed
Mao, Y, Wang, S, Li, M, et al. (2019) Association of trimester-specific gestational weight gain with birth weight and fetal growth in a large community-based population. Arch Gynecol Obstet 300, 313322.CrossRefGoogle Scholar
Margerison-Zilko, CE, Shrimali, BP, Eskenazi, B, et al. (2012) Trimester of maternal gestational weight gain and offspring body weight at birth and age five. Matern Child Health J 16, 12151223.CrossRefGoogle ScholarPubMed
Retnakaran, R, Wen, SW, Tan, H, et al. (2018) Association of timing of weight gain in pregnancy with infant birth weight. JAMA Pediatr 172, 136142.CrossRefGoogle ScholarPubMed
Karachaliou, M, Georgiou, V, Roumeliotaki, T, et al. (2015) Association of trimester-specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am J Obstet Gynecol 212, 502.e501–514.CrossRefGoogle ScholarPubMed
Melamed, N, Meizner, I, Mashiach, R, et al. (2013) Fetal sex and intrauterine growth patterns. J Ultrasound Med 32, 3543.CrossRefGoogle ScholarPubMed
Zhang, X, Wu, M, Zhong, C, et al. (2021) Association between maternal plasma ferritin concentration, iron supplement use, and the risk of gestational diabetes: a prospective cohort study. Am J Clin Nutr 114, 11001106.CrossRefGoogle ScholarPubMed
Zhou, BF & Cooperative Meta-Analysis Group of the Working Group on Obesity in China (2002) Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci 15, 8396.Google ScholarPubMed
Chinese Nutrition Society (2021) Weight Monitoring and Evaluation during Pregnancy Period of Chinese Women. https://www.cnsoc.org/otherNotice/392100200.html (accessed November 2021).Google Scholar
Dai, L, Deng, C, Li, Y, et al. (2014) Birth weight reference percentiles for Chinese. PLoS One 9, e104779.CrossRefGoogle ScholarPubMed
International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger, BE, Gabbe, SG, et al. (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33, 676682.CrossRefGoogle ScholarPubMed
Hypertension in Pregnancy (2013) Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol 122, 11221131.Google Scholar
Sterne, JA, White, IR, Carlin, JB, et al. (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393.CrossRefGoogle ScholarPubMed
Zou, G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159, 702706.CrossRefGoogle ScholarPubMed
Institute of Medicine and National Research Council Committee to Reexamine IOM Pregnancy Weight Guidelines (2009) Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: National Academies Press.Google Scholar
Thorsdottir, I, Torfadottir, JE, Birgisdottir, BE, et al. (2002) Weight gain in women of normal weight before pregnancy: complications in pregnancy or delivery and birth outcome. Obstet Gynecol 99, 799806.Google ScholarPubMed
Butte, NF, Ellis, KJ, Wong, WW, et al. (2003) Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol 189, 14231432.CrossRefGoogle ScholarPubMed
Ghio, A, Bertolotto, A, Resi, V, et al. (2011) Triglyceride metabolism in pregnancy. Adv Clin Chem 55, 133153.CrossRefGoogle ScholarPubMed
Villar, J, Cogswell, M, Kestler, E, et al. (1992) Effect of fat and fat-free mass deposition during pregnancy on birth weight. Am J Obstet Gynecol 167, 13441352.CrossRefGoogle ScholarPubMed
Villar, J, Cheikh Ismail, L, Victora, CG, et al. (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st project. Lancet 384, 857868.CrossRefGoogle ScholarPubMed
Tamimi, RM, Lagiou, P, Mucci, LA, et al. (2003) Average energy intake among pregnant women carrying a boy compared with a girl. BMJ 326, 12451246.CrossRefGoogle ScholarPubMed
Poissonnet, CM, Burdi, AR & Bookstein, FL (1983) Growth and development of human adipose tissue during early gestation. Early Human Dev 8, 111.CrossRefGoogle ScholarPubMed
Brunner, S, Stecher, L, Ziebarth, S, et al. (2015) Excessive gestational weight gain prior to glucose screening and the risk of gestational diabetes: a meta-analysis. Diabetologia 58, 22292237.CrossRefGoogle ScholarPubMed
Headen, I, Cohen, AK, Mujahid, M, et al. (2017) The accuracy of self-reported pregnancy-related weight: a systematic review. Obes Rev 18, 350369.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lin et al. supplementary material

Lin et al. supplementary material

Download Lin et al. supplementary material(File)
File 941 KB