Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T00:41:07.806Z Has data issue: false hasContentIssue false

Role of dietary intake and physical activity in reducing weight social inequalities among adolescents: an application of G-formula to PRALIMAP-INÈS trial

Published online by Cambridge University Press:  27 May 2024

Mohamed Dakin*
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France
Florian Manneville
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France Inserm, CHRU Nancy, Université de Lorraine, CIC-Clinical Epidemiology, Nancy F-54000, France
Johanne Langlois
Affiliation:
Conservatoire National des Arts et Métiers – Institut scientifique et technique de la nutrition et de l’alimentation (Cnam-ISTNA), Nancy, France
Serge Briançon
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France
Edith Lecomte
Affiliation:
Conservatoire National des Arts et Métiers – Institut scientifique et technique de la nutrition et de l’alimentation (Cnam-ISTNA), Nancy, France
Elisabeth Spitz
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France
Karine Legrand
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France Inserm, CHRU Nancy, Université de Lorraine, CIC-Clinical Epidemiology, Nancy F-54000, France
Philip Böhme
Affiliation:
Service d’endocrinologie, diabétologie et nutrition, CHRU Nancy, Nancy, F-54000, France
Francis Guillemin
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France Inserm, CHRU Nancy, Université de Lorraine, CIC-Clinical Epidemiology, Nancy F-54000, France
Abdou Omorou
Affiliation:
Inserm, UMR 1319 INSPIIRE, Université de Lorraine, Nancy, Metz, France Inserm, CHRU Nancy, Université de Lorraine, CIC-Clinical Epidemiology, Nancy F-54000, France
*
*Corresponding author: Mohamed Dakin, email mohamed.dakin@univ-lorraine.fr

Abstract

Interventions aiming to reduce social inequalities of weight status in adolescents usually focus on lifestyle behaviours, but their effectiveness is limited. This study analysed the effect of achieving levels of dietary intake (DI) and/or physical activity (PA) guidelines on reducing social inequalities in weight status among adolescents. We included adolescents from the PRomotion de l’ALIMentation et de l’Activité Physique – INÉgalité de Santé (PRALIMAP-INÈS) trial with weight status data available at baseline and 1-year follow-up (n 1130). PA and DI were measured using the International Physical Activity Questionnaire and a validated FFQ, respectively. We estimated the likelihood of a 1-year reduction in BMI z-score (BMIz) and population risk difference (PRD) under hypothetical DI and PA levels and socio-economic status using the parametric G-formula. When advantaged and less advantaged adolescents maintained their baseline DI and PA, we found social inequalities in weight status, with a PRD of a 1-year reduction in BMIz of −1·6 % (–3·0 %, −0·5 %). These inequalities were not observed when less advantaged adolescents increased their proportion of achieving DI guidelines by 30 % (PRD = 2·2 % (–0·5 %, 5·0 %)) unlike the same increase in PA (PRD = −3·9 % (–6·8 %, −1·3 %)). Finally, social inequalities of weight status were not observed when levels of achievement of both PA and DI guidelines increased by 30 % (PRD = 2·2 % (–0·5 %, 4·0 %)). Enhancing DI rather than PA could be effective in reducing social inequalities in weight status among adolescents. Future interventions aiming to reduce these inequalities should mostly target DI to be effective.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (2021) Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed June 2023).Google Scholar
Angelantonio, ED, Bhupathiraju, SN, Wormser, D, et al. (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388, 776786. Elsevier.CrossRefGoogle Scholar
Chung, A, Backholer, K, Wong, E, et al. (2016) Trends in child and adolescent obesity prevalence in economically advanced countries according to socioeconomic position: a systematic review. Obes Rev 17, 276295.CrossRefGoogle ScholarPubMed
Sares-Jäske, L, Grönqvist, A, Mäki, P, et al. (2022) Family socioeconomic status and childhood adiposity in Europe - a scoping review. Prev Med 160, 107095.CrossRefGoogle ScholarPubMed
Ding, C, Fan, J, Yuan, F, et al. (2021) Association between physical activity, sedentary behaviors, sleep, diet, and adiposity among children and adolescents in China. Obes Facts 15, 2635.CrossRefGoogle ScholarPubMed
Chaput, J-P, Willumsen, J, Bull, F, et al. (2020) 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: summary of the evidence. Int J Behav Nutr Phys Act 17, 141.CrossRefGoogle ScholarPubMed
Bambra, C (2011) Health inequalities and welfare state regimes: theoretical insights on a public health ‘puzzle’. J Epidemiol Community Health 65, 740745. BMJ Publishing Group Ltd.CrossRefGoogle ScholarPubMed
Inchley, J, Currie, D, Jewell, J, et al. (2017) Adolescent Obesity and Related Behaviours: Trends and Inequalities in the WHO European Region, 2002–2014: Observations from the Health Behaviour in School-aged Children (HBSC) WHO Collaborative Cross-National Study. World Health Organization. Regional Office for Europe [Internet]. [cited 2023 Oct]. Available from: https://iris.who.int/handle/10665/329417.Google Scholar
Akkoyun-Farinez, J, Omorou, AY, Langlois, J, et al. (2018) Measuring adolescents’ weight socioeconomic gradient using parental socioeconomic position. Eur J Public Health 28, 10971102.CrossRefGoogle ScholarPubMed
Hillier-Brown, FC, Bambra, CL, Cairns, J-M, et al. (2014) A systematic review of the effectiveness of individual, community and societal level interventions at reducing socioeconomic inequalities in obesity amongst children. BMC Public Health 14, 834.CrossRefGoogle ScholarPubMed
Freudenberg, N (2013) Commentary: reducing inequalities in child obesity in developed nations: what do we know? What can we do? Rev Port Saúde Pública 31, 115122. Elsevier.CrossRefGoogle Scholar
Brown, T, Moore, TH, Hooper, L, et al. (2019) Interventions for preventing obesity in children. Cochrane Database Syst Rev 2019, issue 7, CD001871. John Wiley & Sons, Ltd.Google ScholarPubMed
Jebeile, H, Kelly, AS, O’Malley, G, et al. (2022) Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol 10, 351365.CrossRefGoogle ScholarPubMed
Taubman, SL, Robins, JM, Mittleman, MA, et al. (2009) Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol 38, 15991611.CrossRefGoogle ScholarPubMed
Legrand, K, Lecomte, E, Langlois, J, et al. (2017) Reducing social inequalities in access to overweight and obesity care management for adolescents: the PRALIMAP-INÈS trial protocol and inclusion data analysis. Contemp Clin Trials Commun 7, 141157.CrossRefGoogle ScholarPubMed
Briançon, S, Legrand, K, Muller, L, et al. (2020) Effectiveness of a socially adapted intervention in reducing social inequalities in adolescence weight. The PRALIMAP-INÈS school-based mixed trial. Int J Obes 44, 895907. Nature Publishing Group.CrossRefGoogle ScholarPubMed
Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.CrossRefGoogle ScholarPubMed
McCarthy, HD, Jarrett, KV & Crawley, HF (2001) The development of waist circumference percentiles in British children aged 5·0–16·9 years. Eur J Clin Nutr 55, 902907.CrossRefGoogle Scholar
Currie, C, Molcho, M, Boyce, W, et al. (2008) Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Soc Sci Med 66, 14291436.CrossRefGoogle ScholarPubMed
Boyce, W, Torsheim, T, Currie, C, et al. (2006) The family affluence scale as a measure of national wealth: validation of an adolescent self-report measure. Soc Indic Res 78, 473487.CrossRefGoogle Scholar
Fédération nationale des observatoires régionaux de la santé (2009) Harmoniser les études en nutrition un guide de bonnes pratiques pour les études régionales et locales. 79p. France [Internet]. [cited 2023 Oct]. Available from: https://sante.gouv.fr/IMG/pdf/guide_fnors_nutrition.pdf Google Scholar
Ministère des Solidarités et de la Santé (2018) Programme National Nutrition Santé 2019–2023. 93p. France [Internet]. [cited 2023 Oct]. Available from: https://pedagogie.ac-strasbourg.fr/fileadmin/pedagogie/nutrition/Textes_officiels/pnns4_2019-2023.pdf Google Scholar
Craig, CL, Marshall, AL, Sjöström, M, et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35, 13811395.CrossRefGoogle ScholarPubMed
Hagströmer, M, Bergman, P, De Bourdeaudhuij, I, et al. (2008) Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: the HELENA Study. Int J Obes 32, S42S48. Nature Publishing Group.CrossRefGoogle ScholarPubMed
de Onis, M, Onyango, AW, Borghi, E, et al. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.CrossRefGoogle ScholarPubMed
Kolsgaard, MLP, Joner, G, Brunborg, C, et al. (2011) Reduction in BMI z-score and improvement in cardiometabolic risk factors in obese children and adolescents. The Oslo Adiposity Intervention Study - a hospital/public health nurse combined treatment. BMC Pediatr 11, 47.CrossRefGoogle ScholarPubMed
World Health Organization (2018) Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Geneva: World Health Organization.Google Scholar
Thoemmes, F, MacKinnon, DP & Reiser, MR (2010) Power analysis for complex mediational designs using Monte Carlo methods. Struct Equ Model 17, 510534.CrossRefGoogle ScholarPubMed
Manneville, F, Omorou, AY, Legrand, K, et al. (2019) Universal school-based intervention does not reduce socioeconomic inequalities in weight status among adolescents. Childhood Obes 15, 532540. Mary Ann Liebert, Inc., publishers.CrossRefGoogle Scholar
Beauchamp, A, Backholer, K, Magliano, D, et al. (2014) The effect of obesity prevention interventions according to socioeconomic position: a systematic review. Obes Rev 15, 541554.CrossRefGoogle ScholarPubMed
Peeters, A & Backholer, K (2014) Prioritising and tackling socio-economic inequalities in obesity. BMC Obes 1, 16.CrossRefGoogle Scholar
de Mestral, C, Chatelan, A, Marques-Vidal, P, et al. (2019) The contribution of diet quality to socioeconomic inequalities in obesity: a population-based study of Swiss adults. Nutrients 11, 1573.CrossRefGoogle ScholarPubMed
Andrade, S, Lachat, C, Ochoa-Aviles, A, et al. (2014) A school-based intervention improves physical fitness in Ecuadorian adolescents: a cluster-randomized controlled trial. Int J Behav Nutr Phys Act 11, 153.CrossRefGoogle ScholarPubMed
Hollis, JL, Sutherland, R, Campbell, L, et al. (2016) Effects of a ‘school-based’ physical activity intervention on adiposity in adolescents from economically disadvantaged communities: secondary outcomes of the ‘Physical Activity 4 Everyone’ RCT. Int J Obes 40, 14861493. Nature Publishing Group.CrossRefGoogle ScholarPubMed
Pfeiffer, KA, Robbins, LB, Ling, J, et al. (2019) Effects of the Girls on the Move randomized trial on adiposity and aerobic performance (secondary outcomes) in low-income adolescent girls. Pediatr Obes 14, e12559.CrossRefGoogle ScholarPubMed
Pearce, A, Hope, S, Griffiths, L, et al. (2019) What if all children achieved WHO recommendations on physical activity? Estimating the impact on socioeconomic inequalities in childhood overweight in the UK Millennium Cohort Study. Int J Epidemiol 48, 134147.CrossRefGoogle ScholarPubMed
Svendsen, MT, Bak, CK, Sørensen, K, et al. (2020) Associations of health literacy with socioeconomic position, health risk behavior, and health status: a large national population-based survey among Danish adults. BMC Public Health 20, 565.CrossRefGoogle ScholarPubMed
Setiono, FJ, Guerra, LA, Leung, C, et al. (2021) Sociodemographic characteristics are associated with prevalence of high-risk waist circumference and high-risk waist-to-height ratio in U.S. adolescents. BMC Pediatr 21, 215.CrossRefGoogle ScholarPubMed
Leme, ACB, Lubans, DR, Guerra, PH, et al. (2016) Preventing obesity among Brazilian adolescent girls: six-month outcomes of the Healthy Habits, Healthy Girls–Brazil school-based randomized controlled trial. Prev Med 86, 7783.CrossRefGoogle ScholarPubMed
Moore, SM, Borawski, EA, Love, TE, et al. (2019) Two family interventions to reduce BMI in low-income urban youth: a randomized trial. Pediatrics 143, e20182185.CrossRefGoogle ScholarPubMed
Lee, S, Kim, Y & Han, M (2022) Influence of waist circumference measurement site on visceral fat and metabolic risk in youth. J Obes Metab Syndr 31, 296302.CrossRefGoogle ScholarPubMed
Omorou, AY, Manneville, F, Langlois, J, et al. (2020) Physical activity rather than sedentary behaviour is socially determined in French adolescents with overweight and obesity. Prev Med 134, 106043.CrossRefGoogle ScholarPubMed
Wasserstein, RL & Lazar, NA (2016) The ASA statement on P-values: context, process, and purpose. Am Statistician 70, 129133. Taylor & Francis.CrossRefGoogle Scholar
Graham, H & Kelly, M (2004) Health Inequalities: Concepts, Frameworks and Policy. London: Health Development Agency.Google Scholar
Prado, G, Fernandez, A, St. George, SM, et al. (2020) Results of a family-based intervention promoting healthy weight strategies in overweight Hispanic adolescents and parents: an RCT. Am J Prev Med 59, 658668.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dakin et al. supplementary material

Dakin et al. supplementary material
Download Dakin et al. supplementary material(File)
File 22.3 KB