Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-fsxpr Total loading time: 0.352 Render date: 2021-06-24T04:23:21.313Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The overall plant-based diet index during pregnancy and risk of gestational diabetes mellitus: a prospective cohort study in China

Published online by Cambridge University Press:  20 January 2021

Huanzhuo Wang
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Li Huang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Lixia Lin
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Xi Chen
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Chunrong Zhong
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Qian Li
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Nan Li
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Duan Gao
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Xuezhen Zhou
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Renjuan Chen
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Yu Zhang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Beizhu Ye
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Liping Hao
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Xuefeng Yang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Nianhong Yang
Affiliation:
Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Sheng Wei
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
Corresponding

Abstract

The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; P for trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below.

References

McIntyre, HD, Catalano, P, Zhang, C, et al. (2019) Gestational diabetes mellitus. Nat Rev Dis Primers 5, 47.CrossRefGoogle ScholarPubMed
Gao, C, Sun, X, Lu, L, et al. (2019) Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis. J Diabetes Investig 10, 154162.CrossRefGoogle ScholarPubMed
Billionnet, C, Mitanchez, D, Weill, A, et al. (2017) Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 60, 636644.CrossRefGoogle ScholarPubMed
Daly, B, Toulis, KA, Thomas, N, et al. (2018) Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: a population-based cohort study. PLoS Med 15, e1002488.CrossRefGoogle ScholarPubMed
Fadl, HE, Ostlund, IKM, Magnuson, AFK, et al. (2010) Maternal and neonatal outcomes and time trends of gestational diabetes mellitus in Sweden from 1991 to 2003. Diabet Med 27, 436441.CrossRefGoogle ScholarPubMed
Lowe, WL, Lowe, LP, Kuang, A, et al. (2019) Maternal glucose levels during pregnancy and childhood adiposity in the hyperglycemia and adverse pregnancy outcome follow-up study. Diabetologia 62, 598610.CrossRefGoogle ScholarPubMed
Lowe, WL, Scholtens, DM, Kuang, A, et al. (2019) Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care 42, 372380.CrossRefGoogle ScholarPubMed
Bianco, ME & Josefson, JL (2019) Hyperglycemia during pregnancy and long-term offspring outcomes. Curr Diab Rep 19, 143.CrossRefGoogle ScholarPubMed
Zhang, C, Liu, S, Solomon, CG, et al. (2006) Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 29, 22232230.CrossRefGoogle ScholarPubMed
Chen, L, Hu, FB, Yeung, E, et al. (2012) Prepregnancy consumption of fruits and fruit juices and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 35, 10791082.CrossRefGoogle ScholarPubMed
Goshtasebi, A, Hosseinpour-Niazi, S, Mirmiran, P, et al. (2018) Pre-pregnancy consumption of starchy vegetables and legumes and risk of gestational diabetes mellitus among Tehranian women. Diabetes Res Clin Pract 139, 131138.CrossRefGoogle ScholarPubMed
Bao, W, Tobias, DK, Hu, FB, et al. (2016) Pre-pregnancy potato consumption and risk of gestational diabetes mellitus: prospective cohort study. BMJ 352, h6898.CrossRefGoogle ScholarPubMed
Halton, TL, Willett, WC, Liu, S, et al. (2006) Potato and French fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr 83, 284290.CrossRefGoogle ScholarPubMed
Schoenaker, DAJM, Mishra, GD, Callaway, LK, et al. (2016) The role of energy, nutrients, foods, and dietary patterns in the development of gestational diabetes mellitus: a systematic review of observational studies. Diabetes Care 39, 1623.CrossRefGoogle ScholarPubMed
Gerber, M (2001) The comprehensive approach to diet: a critical review. J Nutr 131, 3051s3055s.CrossRefGoogle ScholarPubMed
Satija, A, Bhupathiraju, SN, Rimm, EB, et al. (2016) Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med 13, e1002039.CrossRefGoogle ScholarPubMed
Chen, Z, Zuurmond, MG, van der Schaft, N, et al. (2018) Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Eur J Epidemiol 33, 883893.CrossRefGoogle ScholarPubMed
Zamani, B, Milajerdi, A, Tehrani, H, et al. (2019) Association of a plant-based dietary pattern in relation to gestational diabetes mellitus. Nutr Diet 76, 589596.CrossRefGoogle ScholarPubMed
Dupépé, EB, Kicielinski, KP, Gordon, AS, et al. (2019) What is a case-control study? Neurosurgery 84, 819826.CrossRefGoogle ScholarPubMed
Huang, L, Chen, X, Zhang, Y, et al. (2019) Gestational weight gain is associated with delayed onset of lactogenesis in the TMCHC study: a prospective cohort study. Clin Nutr 38, 24362441.CrossRefGoogle ScholarPubMed
Qiu, C, Frederick, IO, Zhang, C, et al. (2011) Risk of gestational diabetes mellitus in relation to maternal egg and cholesterol intake. Am J Epidemiol 173, 649658.CrossRefGoogle ScholarPubMed
Zhang, H, Qiu, X, Zhong, C, et al. (2015) Reproducibility and relative validity of a semi-quantitative food frequency questionnaire for Chinese pregnant women. Nutr J 14, 56.CrossRefGoogle ScholarPubMed
Metzger, BE, Gabbe, SG, Persson, B, et al. (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33, 676682.CrossRefGoogle ScholarPubMed
Desquilbet, L & Mariotti, F (2010) Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 29, 10371057.Google ScholarPubMed
Cosson, E, Benbara, A, Pharisien, I, et al. (2013) Diagnostic and prognostic performances over 9 years of a selective screening strategy for gestational diabetes mellitus in a cohort of 18,775 subjects. Diabetes Care 36, 598603.CrossRefGoogle Scholar
He, JR, Yuan, MY, Chen, NN, et al. (2015) Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China. Br J Nutr 113, 12921300.CrossRefGoogle ScholarPubMed
Lee, Y & Park, K (2017) Adherence to a vegetarian diet and diabetes risk: a systematic review and meta-analysis of observational studies. Nutrients 9, 603.Google ScholarPubMed
Prentice, RL, Aragaki, AK, Howard, BV, et al. (2019) Low-fat dietary pattern among postmenopausal women influences long-term cancer, cardiovascular disease, and diabetes outcomes. J Nutr 149, 15651574.CrossRefGoogle ScholarPubMed
Qian, F, Liu, G, Hu, FB, et al. (2019) Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med 179, 13351344.CrossRefGoogle Scholar
Kühl, C (1998) Etiology and pathogenesis of gestational diabetes. Diabetes Care 21, Suppl. 2, B19B26.Google ScholarPubMed
Huopio, H, Cederberg, H, Vangipurapu, J, et al. (2013) Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur J Endocrinol 169, 291297.CrossRefGoogle ScholarPubMed
Baz, B, Riveline, J-P & Gautier, J-F (2016) Endocrinology of pregnancy: gestational diabetes mellitus: definition, aetiological and clinical aspects. Eur J Endocrinol 174, R43R51.CrossRefGoogle ScholarPubMed
Vounzoulaki, E, Khunti, K, Abner, SC, et al. (2020) Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ 369, m1361.CrossRefGoogle ScholarPubMed
Engeland, A, Bjørge, T, Daltveit, AK, et al. (2011) Risk of diabetes after gestational diabetes and preeclampsia. A registry-based study of 230,000 women in Norway. Eur J Epidemiol 26, 157163.CrossRefGoogle ScholarPubMed
Dahl, WJ & Stewart, ML (2015) Position of the academy of nutrition and dietetics: health implications of dietary fiber. J Acad Nutr Diet 115, 18611870.CrossRefGoogle Scholar
Russell, WR, Baka, A, Bjorck, I, et al. (2016) Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr 56, 541590.CrossRefGoogle ScholarPubMed
Weitkunat, K, Stuhlmann, C, Postel, A, et al. (2017) Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci Rep 7, 6109.CrossRefGoogle Scholar
Santangelo, C, Zicari, A, Mandosi, E, et al. (2016) Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br J Nutr 115, 11291144.CrossRefGoogle ScholarPubMed
Pham, NM, Do, VV & Lee, AH (2019) Polyphenol-rich foods and risk of gestational diabetes: a systematic review and meta-analysis. Eur J Clin Nutr 73, 647656.CrossRefGoogle ScholarPubMed
Nguyen-Ngo, C, Willcox, JC & Lappas, M (2019) Anti-diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Mol Nutr Food Res 63, e1900224.CrossRefGoogle Scholar
Veronese, N, Watutantrige-Fernando, S, Luchini, C, et al. (2016) Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials. Eur J Clin Nutr 70, 13541359.CrossRefGoogle ScholarPubMed
Asemi, Z, Jamilian, M, Mesdaghinia, E, et al. (2015) Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: randomized, double-blind, placebo-controlled trial. Nutrition 31, 12351242.CrossRefGoogle ScholarPubMed
Chen, Z, Franco, OH, Lamballais, S, et al. (2020) Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Clin Nutr 39, 242249.CrossRefGoogle ScholarPubMed
von Frankenberg, AD, Marina, A, Song, X, et al. (2017) A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults. Eur J Nutr 56, 431443.CrossRefGoogle ScholarPubMed
Juan, J & Yang, H (2020) Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int J Environ Res Public Health 17, 9517.CrossRefGoogle ScholarPubMed
Gao, S, Leng, J, Liu, H, et al. (2020) Development and validation of an early pregnancy risk score for the prediction of gestational diabetes mellitus in Chinese pregnant women. BMJ Open Diabetes Res Care 8, e000909.CrossRefGoogle ScholarPubMed
Li, G, Wei, T, Ni, W, et al. (2020) Incidence and risk factors of gestational diabetes mellitus: a prospective cohort study in Qingdao, China. Front Endocrinol 11, 636.CrossRefGoogle ScholarPubMed
Hou, Y, Li, S, Xia, L, et al. (2021) Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. Sci Total Environ 754, 142085.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Tables S1-S5

Download Wang et al. supplementary material(File)
File 36 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The overall plant-based diet index during pregnancy and risk of gestational diabetes mellitus: a prospective cohort study in China
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The overall plant-based diet index during pregnancy and risk of gestational diabetes mellitus: a prospective cohort study in China
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The overall plant-based diet index during pregnancy and risk of gestational diabetes mellitus: a prospective cohort study in China
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *