Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T06:14:21.878Z Has data issue: false hasContentIssue false

Beyond novelty: Learnability in the interplay between creativity, curiosity and artistic endeavours

Published online by Cambridge University Press:  21 May 2024

Diana Omigie
Affiliation:
Department of Psychology, Goldsmiths, University of London, London, UK diana.omigie@gold.ac.uk j.bhattacharya@gold.ac.uk https://www.gold.ac.uk/psychology/staff/omigie/ https://www.gold.ac.uk/psychology/staff/bhattacharya/
Joydeep Bhattacharya*
Affiliation:
Department of Psychology, Goldsmiths, University of London, London, UK diana.omigie@gold.ac.uk j.bhattacharya@gold.ac.uk https://www.gold.ac.uk/psychology/staff/omigie/ https://www.gold.ac.uk/psychology/staff/bhattacharya/
*
*Corresponding author.

Abstract

Using art and aesthetics as context, we explore the notion that curiosity and creativity emanate from a single novelty-seeking mechanism and outline support for the idea. However, we also highlight the importance of learning progress tracking in exploratory action and advocate for a nuanced understanding that aligns novelty-seeking with learnability. This, we argue, offers a more comprehensive framework of how curiosity and creativity are related.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, M. M., Kiverstein, J., Miller, M., & Roepstorff, A. (2023). Play in predictive minds: A cognitive theory of play. Psychological Review, 130(2), 462479. https://doi.org/10.1037/rev0000369CrossRefGoogle ScholarPubMed
Bianco, R., Ptasczynski, L. E., & Omigie, D. (2020). Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain and Cognition, 138, 103621. https://doi.org/10.1016/j.bandc.2019.103621CrossRefGoogle ScholarPubMed
Cattaneo, Z., Lega, C., Gardelli, C., Merabet, L. B., Cela-Conde, C. J., & Nadal, M. (2014). The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: A TMS study. NeuroImage, 99, 443450. https://doi.org/10.1016/j.neuroimage.2014.05.037CrossRefGoogle ScholarPubMed
Chaudhuri, S., Dooley, M., Johnson, D., Beaty, R., & Bhattacharya, J. (2023). Evaluation of poetic creativity: Predictors and the role of expertise-A multilevel approach. Psychology of Aesthetics, Creativity, and the Arts. https://doi.org/10.1037/aca0000649Google Scholar
Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 40844092.e4. https://doi.org/10.1016/j.cub.2019.09.067CrossRefGoogle ScholarPubMed
De Aquino, M. P. B., Verdejo-Román, J., Pérez-García, M., & Pérez-García, P. (2019). Different role of the supplementary motor area and the insula between musicians and non-musicians in a controlled musical creativity task. Scientific Reports, 9(1), 13006. https://doi.org/10.1038/s41598-019-49405-5CrossRefGoogle Scholar
Dubey, R., & Griffiths, T. L. (2020). Reconciling novelty and complexity through a rational analysis of curiosity. Psychological Review, 127(3), 455476. https://doi.org/10.1037/rev0000175CrossRefGoogle ScholarPubMed
Forest, T. A., Siegelman, N., & Finn, A. S. (2022). Attention shifts to more complex structures with experience. Psychological Science, 33(12), 20592072. https://doi.org/10.1177/09567976221114055CrossRefGoogle ScholarPubMed
Galvan, J., & Omigie, D. (2022). Individual differences in the expression and experience of curiosity are reflected in patterns of music preferences and appreciation. Psychomusicology: Music, Mind, and Brain, 32(3–4), 5975. https://doi.org/10.1037/pmu0000289CrossRefGoogle Scholar
Garcia-Ruiz, P. J., Martinez Castrillo, J. C., & Desojo, L. V. (2019). Creativity related to dopaminergic treatment: A multicenter study. Parkinsonism & Related Disorders, 63, 169173. https://doi.org/10.1016/j.parkreldis.2019.02.010CrossRefGoogle ScholarPubMed
Gerken, L., Balcomb, F. K., & Minton, J. L. (2011). Infants avoid ‘labouring in vain’ by attending more to learnable than unlearnable linguistic patterns: Infants attend more to learnable patterns. Developmental Science, 14(5), 972979. https://doi.org/10.1111/j.1467-7687.2011.01046.xCrossRefGoogle ScholarPubMed
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? The Journal of Neuroscience, 39(47), 93979409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019CrossRefGoogle Scholar
Kenett, Y. N., Humphries, S., & Chatterjee, A. (2023). A thirst for knowledge: Grounding curiosity, creativity, and aesthetics in memory and reward neural systems. Creativity Research Journal, 35(3), 412426. https://doi.org/10.1080/10400419.2023.2165748CrossRefGoogle Scholar
Leder, H., & Nadal, M. (2014). Ten years of a model of aesthetic appreciation and aesthetic judgments: The aesthetic episode – developments and challenges in empirical aesthetics. British Journal of Psychology, 105(4), 443464. https://doi.org/10.1111/bjop.12084CrossRefGoogle Scholar
Lhommée, E., Batir, A., Quesada, J. L., Ardouin, C., Fraix, V., Seigneuret, E., … Krack, P. (2014). Dopamine and the biology of creativity: Lessons from Parkinson's disease. Frontiers in Neurology, 5, 55. https://doi.org/10.3389/fneur.2014.00055Google ScholarPubMed
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2017). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2(1), 2732. https://doi.org/10.1038/s41562-017-0241-zCrossRefGoogle ScholarPubMed
Matthews, T. E., Stupacher, J., & Vuust, P. (2023). The pleasurable urge to move to music through the lens of learning progress. Journal of Cognition, 6(1), 55. https://doi.org/10.5334/joc.320CrossRefGoogle ScholarPubMed
Mencke, I., Omigie, D., Quiroga-Martinez, D. R., & Brattico, E. (2022). Atonal music as a model for investigating exploratory behavior. Frontiers in Neuroscience, 16, 793163. https://doi.org/10.3389/fnins.2022.793163CrossRefGoogle Scholar
Metcalfe, J., Schwartz, B. L., & Eich, T. S. (2020). Epistemic curiosity and the region of proximal learning. Current Opinion in Behavioral Sciences, 35, 4047. https://doi.org/10.1016/j.cobeha.2020.06.007CrossRefGoogle ScholarPubMed
Omigie, D., Pearce, M., Lehongre, K., Hasboun, D., Navarro, V., Adam, C., & Samson, S. (2019). Intracranial recordings and computational modeling of music reveal the time course of prediction error signaling in frontal and temporal cortices. Journal of Cognitive Neuroscience, 31(6), 855873. https://doi.org/10.1162/jocn_a_01388CrossRefGoogle ScholarPubMed
Omigie, D., & Ricci, J. (2023). Accounting for expressions of curiosity and enjoyment during music listening. Psychology of Aesthetics, Creativity, and the Arts, 17(2), 225241. https://doi.org/10.1037/aca0000461CrossRefGoogle Scholar
Oudeyer, P.-Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265286. https://doi.org/10.1109/TEVC.2006.890271CrossRefGoogle Scholar
Poli, F., Meyer, M., Mars, R. B., & Hunnius, S. (2022). Contributions of expected learning progress and perceptual novelty to curiosity-driven exploration. Cognition, 225, 105119. https://doi.org/10.1016/j.cognition.2022.105119CrossRefGoogle ScholarPubMed
Schuler, A.-L., Tik, M., Sladky, R., Luft, C. D. B., Hoffmann, A., Woletz, M., … Windischberger, C. (2019). Modulations in resting state networks of subcortical structures linked to creativity. NeuroImage, 195, 311319. https://doi.org/10.1016/j.neuroimage.2019.03.017CrossRefGoogle ScholarPubMed
Ten, A., Kaushik, P., Oudeyer, P.-Y., & Gottlieb, J. (2021). Humans monitor learning progress in curiosity-driven exploration. Nature Communications, 12(1), 5972. https://doi.org/10.1038/s41467-021-26196-wCrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., Willinger, D., Hoffmann, A., Banissy, M. J., … Windischberger, C. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073CrossRefGoogle ScholarPubMed
Welke, D., Purton, I., & Vessel, E. A. (2023). Inspired by art: Higher aesthetic appeal elicits increased felt inspiration in a creative writing task. Psychology of Aesthetics, Creativity, and the Arts, 17(3), 261277. https://doi.org/10.1037/aca0000393CrossRefGoogle Scholar
Zioga, I., Harrison, P. M. C., Pearce, M. T., Bhattacharya, J., & Di Bernardi Luft, C. (2020). From learning to creativity: Identifying the behavioural and neural correlates of learning to predict human judgements of musical creativity. NeuroImage, 206, 116311. https://doi.org/10.1016/j.neuroimage.2019.116311CrossRefGoogle ScholarPubMed