Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T22:22:24.393Z Has data issue: false hasContentIssue false

The United Kingdom’s contributions to the development of aeronautics Part 4. The origins of the jet age

Published online by Cambridge University Press:  04 July 2016

J. A. D. Ackroyd*
Affiliation:
Aerospace DivisionManchester School of EngineeringUniversity of Manchester, Manchester, UK

Extract

Despite the common title of this series of papers, the specific area into which we now move originated on a more global scale than the title suggests. Thus in the spirit of the plan set down at the outset for this review, viz that major ideas from abroad must be included, contributions from such countries as France, Germany and the United States here warrant greater prominence.

In Part 3 of this review we surveyed the development within Britain of the stress-skinned streamlined monoplane. Since the 1920s increasing numbers within Britain’s government research establishments, the universities and industry had been actively promoting this advance. Nonetheless, the practical hardware’s eventual emergence by the mid-1930s was largely driven by industry’s need for greater aerodynamic efficiency and a desire to excel. Thus record-breaking attempts, events such as the Schneider Trophy and MacRobertson races, all provided the impetus for this. So, too, did the commercial pressure of a new generation of American airliners and, for those astute enough to interpret them as such, the alarum calls of an impending Second World War. As a result of the appreciable decrease in drag coefficient achieved, coupled to a massive improvement in piston engine power, military aircraft, in particular, proved capable of flying not only further and higher but also dramatically faster. A further consequence, however, was that certain wartime high-speed fighter aircraft began to encounter serious, even fatal, compressibility effects as their enhanced speeds in dives reached subsonic critical Mach number conditions.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2003 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ackroyd, J.A.D. The United Kingdom’s contributions to the development of aeronautics; Part 3. The development of the streamlined monoplane (the 1920s–1940s), Aeronaut J, May 2002, 106, (1059), pp 217268.Google Scholar
2. Ackroyd, J.A.D. The United Kingdom’s contributions to the development of aeronautics; Part 2. The development of the practical aeroplane, Aeronaut J, December 2000, 104, (1042), pp 569596.Google Scholar
3. Ackroyd, J.A.D. The United Kingdom’s contributions to the development of aeronautics; Part 1. From antiquity to the era of the Wrights, Aeronaut J, January 2000, 104, (1031), pp 930.Google Scholar
4. Newton, I. Philosophiae Naturalis Principia Mathematica, London, 1687. [Mathematical Principles of Natural Philosophy, Trans Third Latin Edition by Motte, A. London, 1729; the translation used here is by Cohen, I.B. and Whitman, A., University of California Press, 1999.]Google Scholar
5. Biot, J.-B. Sur la théorie du son, J de Phys, 1802, 55, pp 173182.Google Scholar
6. Laplace, P.-S. Traité de mécanique céleste, Vol 5, Duprat, Paris, 1825.Google Scholar
7. Robins, B. New Principles of Gunnery, London, 1742.Google Scholar
8. Wilson, J. The Mathematical Tracts of the Late Benjamin Robins FRS, London, 1761.Google Scholar
9. Rogers, E.W.E. Aerodynamics in retrospect and prospect, Aeronaut J, February 1982, 86, (852), pp 4367.Google Scholar
10. Bensberg, H. and Cranz, C. Über eine photographische Methode zur Messung von Geschwindigkeiten und Geschwindigkeitsverlusten bei Infanteriegeschossen, Artilleristische Monatshefte Berlin, 1910, 41, pp 333346.Google Scholar
11. Anderson, J.D. A History of Aerodynamics, Cambridge University Press, 1997.Google Scholar
12. Euler, L. Neue Grundsätze der Artillerie, aus dem Englischen des Herrn Benjamin Robins übersetzt und mit vielen Anmerkungen versehen, Berlin, 1745. [see Scherrer, F.R. (Ed). Leonhardi Euleri Opera Omnia, Series II Opera Mechanica, 14, Swiss National Science Society, Lausanne, 1922.]Google Scholar
13. Euler, L. Principes généraux du mouvement des fluides, Hist Acad Berlin, 1755, 11, pp 274315.Google Scholar
14. Truesdell, C.A. Rational Fluid Mechanics, 1687–1765, Leonhardi Euleri Opera Omnia, Series II Opera Mechanica, 12, Swiss National Science Society, Lausanne, 1954.Google Scholar
15. Navier, C.-L.-M.-H. Mémoire sur les lois du mouvement des fluides, Mém de I’Acad Royale des Sci, 1823, 6, pp 389416.Google Scholar
16. Stokes, G.G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans Cam Phil Soc, 1845, 8, pp 287305.Google Scholar
17. Maxwell, J.C. Illustrations of the dynamical theory of gases. Part 1. On the motions and collisions of perfectly elastic spheres, Phil Mag, 1860, 19, pp 1932.Google Scholar
18. Sutherland, W. The viscosity of gases and molecular forces, Phil Mag Series 5, 1893, 36, pp 507531.Google Scholar
19. Millikan, R.A. Über den wahrscheinlichsten Wert des Reibungskoef-fizienten der Luft, Ann Physik, 1913, 41, pp 759766.Google Scholar
20. Rayleigh, Lord On the viscosity of argon as affected by temperature, Proc Roy Soc A, 1900, 66, pp 6874.Google Scholar
21. Mayer, J.R. von Bemerkungen über die Kräfte der unbelebten Natur, Liebig Annul, 1842, 42, pp 233240.Google Scholar
22. Mayer, J.R. von Sur la transformation de la force vive en chaleur, et réciproquement, Comptes Rendus, 1848, 27, pp 385387.Google Scholar
23. Joule, J.P. On the calorific effects of magneto-electricity, and on the mechanical value of heat, Phil Mag, 1843, 23, pp 263276, 347–355, 435–443.Google Scholar
24. Joule, J.P. On the mechanical equivalent of heat, British Assoc Report (Part 2), 1845, p 31.Google Scholar
25. Joule, J.P. On the mechanical equivalent of heat, as determined by the heat evolved by the friction of fluids, Phil Mag, 1847, 31, pp 173176.Google Scholar
26. Leibniz, G.W. von Brevis demonstratio erroris memorabilis Cartesii et aliorum circa legem naturne, Acta Eruditorum, 1686, No 3 (March), pp 161163. [For English translation see Magie, W.F. A Source Book in Physics, McGraw-Hill, New York, 1935.]Google Scholar
27. Thomson, W. and Tait, P.G. Treatise on Natural Philosophy, Cambridge University Press, 1867.Google Scholar
28. Lamb, H. Hydrodynamics (Sixth Edition), Cambridge University Press, 1932.Google Scholar
29. Goldstein, S. (Ed) Modern Developments in Fluid Dynamics, Vols I & II, Oxford University Press, 1938.Google Scholar
30. Howarth, L. (Ed) Modern Developments in Fluid Dynamics; High Speed Flow, Vols I & II, Oxford University Press, 1953.Google Scholar
31. Fourier, J.-B.-J. Théorie Analytique de la Chaleur, Didot père et fils, Paris, 1822.Google Scholar
32. Prandtl, L. Eine Beziehung zwischen Wärmeaustausch und Strömungswiderstand in Flüssigkeiten, Physikalische Zeitschrift, 1910, 11, pp 10721078.Google Scholar
33. Prandtl, L. Führer durch die Stromungslehre, Vieweg, Braunschweig, 1949. [Essentials of Fluid Dynamics, Trans Third German edition by Deans, W.M., Blackie, London, 1952].Google Scholar
34. Nusselt, W. Das Grundgesetz des Wärmeüberganges, Gesundheits-Ingenieur, 1915, 38, pp 477490.Google Scholar
35. Reynolds, O. On the extent and action of the heating surface for steam boilers, Proc Man Lit Phil Soc, 1874, 14, pp 712.Google Scholar
36. Lanchester, F.W. Surface cooling and skin friction, ACA, R&M No 94, 1913.Google Scholar
37. Lanchester, F.W. Report on high altitude flying and the development and improvement of the aeronautical motor, ACA, R&M No 220, 1915.Google Scholar
38. Poisson, S.-D. Mémoire sur la théorie du son, J de L’École Polytechnique, 1808, 14, pp 319392.Google Scholar
39. Challis, J. On the velocity of sound, in reply to Prof Airy, Phil Mag Series 3, 1848, 32, pp 494499.Google Scholar
40. Stokes, G.G. On a difficulty in the theory of sound, Phil Mag Series 3, 1848, 33, pp 349356.Google Scholar
41. Earnshaw, S. On the mathematical theory of sound, Phil Trans Roy Soc A, 1860, 150, pp 133148.Google Scholar
42. Riemann, G.F.B. Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen der Königlichen Gesellshaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, 1858–59, 1860, 8, pp 4365.Google Scholar
43. Rankine, W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbance, Phil Trans Roy Soc A, 1870, 160, pp 277288.Google Scholar
44. Hugoniot, P.-H. Mémoire sur la propagation du mouvement dans les corps et spécialement dans les gases parfaits, J de l’École Polytechnique, Paris, 1887, 57, pp 197; 1889, 58, pp 1–125.Google Scholar
45. Rayleigh, Lord Aerial plane waves of finite amplitude, Proc Roy Soc A, 1910, 84, pp 247284.Google Scholar
46. Taylor, G.I. The conditions necessary for discontinuous motion in gases, Proc Roy Soc A, 1910, 84, pp 371377.Google Scholar
47. Hadamard, J. Lecons sur la propagation des ondes et les équations de l’hydrodynamique, Hermann, Paris, 1903.Google Scholar
48. Crocco, L. Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation, ZAMM, 1937, 17, pp 17.Google Scholar
49. Crocco, G.A. Sulla stabilità dei dirigibili, Rendiconti della Reale Accademia dei Lincei, classe di scienie fisiche, matematiche e naturali, 1904, 13, pp 427432.Google Scholar
50. Töpler, A. Beobachtungen nach einer neuen optischen Methode, Ostwald’s Klassiker, Bonn, 1861.Google Scholar
51. Dvorak, V. Über eine neue einfache Art der Schlierenbeobachtung, Wiedermann’s Ann Phys Chem, 1880, 9, pp 502511.Google Scholar
52. Mach, E. and Salcher, P. Photographische Fixirung der durch Projectile in der Luft eingeleiteten Vorgänge, Sitzungsberichte der Weiner Akademie der Wissenschaften, Abth II, 1887, 95, pp 764780.Google Scholar
53. Black, J. Ernst Mach. Pioneer of supersonics, JRAeS, 1950, 54, pp 371377.Google Scholar
54. Janzen, O. Beitrag zu einer Theorie der stationären Strömung kompressibler Flüssigkeiten, Physikalische Zeitschrift, 1913, 14, pp 639643.Google Scholar
55. Rayleigh, Lord On the flow of compressible fluid past an obstacle, Phil Mag Series 6, 1916, 32, pp 16.Google Scholar
56. Taylor, G.I. and Sharman, C.F. A mechanical method for solving problems of flow in compressible fluids, Proc Roy Soc A, 1928, 121, pp 194217. [See also ARC, R&M No 1195, 1928.]Google Scholar
57. Mach, E. and Salcher, P. Optische Untersuchung der Luftstrahlen, Sitzungsberichte der Weiner Akademie der Wissenschaften, Abth IIa, 1890, 98, pp 13031309.Google Scholar
58. Mach, E. and Mach, L. Weitere ballistisch-photographische Versuche, Sitzungsberichte der Weiner Akademie der Wissenschaften, Abth IIa, 1890, 98, pp 13101326.Google Scholar
59. Mach, L. Über ein Interferenzrefraktometer, Sitzungsberichte der Weiner Akademie der Wissenschaften, Abth IIa, 1892, 101, pp 510; 1893, 102, pp 1035–1056.Google Scholar
60. Saint-Venant, A.-J.-C. B. de, and Wantzel, L. Mémoire et expériences sur l’écoulement de l’air, déterminé par des différences depression considérables, J de I’École Polytechnique, Paris, 1839, 16, pp 85122; Comptes Rendus, 1839, 8, pp 294–298.Google Scholar
61. Stokes, G.G. Report on recent researches in hydrodynamics, British Assoc Report, 1846, pp 1–20.Google Scholar
62. Reynolds, O. On the flow of gases, Proc Man Lit Phil Soc, 1887, 10, pp 164182.Google Scholar
63. Hugoniot, P.-H. Sur la pression qui existe dans la section contractée d’une viene gazeuse, Comptes Rendus, 1886, 103, pp 241243.Google Scholar
64. Hugoniot, P.-H. Sur l’écoulement d’un gaz qui pénètre dans un récipient de capacité limitée, Comptes Rendus, 1886, 103, pp 922925.Google Scholar
65. Hugoniot, P.-H. Sur le mouvement varié d’un gaz comprimé dans un réservoir qui se vide librement dans 1’atmosphére, Comptes Rendus, 1886, 103, pp 10021004.Google Scholar
66. Stodola, A.B. Die Dampf-und Gasturbinen, Vols I & II, Springer, Berlin, 1904.Google Scholar
67. Prandtl, L. Neue Untersuchungen über die strömende Bewegung der Gase und Dämpfe, Physikalische Zeitschrift, 1907, 8, pp 2330.Google Scholar
68. Meyer, T. Über zweidimensionale Bewegungsvorgänge in einem Gas, das mit Überschallgeschwindigkeit strömt, Inaugural-Dissertation, Hohen Philosophischen Fakultät der Georg-August-Universität zu Göttingen, Berlin, 1908. [See also Forschungsheft des Vereins Deutscher Ingenieure, 1908, 62, pp 31-67.]Google Scholar
69. Carrier, G.F. (Ed) Foundations of High Speed Aerodynamics, Dover, New York, 1951.Google Scholar
70. Ackeret, J. Der Luftwiderstand bei sehr grossen Geschwindigkeiten, Schweiz Bauzeitung, 1929, 94, pp 179183.Google Scholar
71. Helmholtz, H.L.F. von Über discontinuierliche Flüssigkeitsbewegungen, Monatsbericht der königlich Preussischen Akademie der Wissenschaften zu Berlin, 1868, 23, pp 215228.Google Scholar
72. Molenbroek, P. Über einige Bewegungen eines Gases bei Annahme eines Geschwindigkeitspotentials, Archiv der Mathematik und Physik, 1890, 9, pp 157195.Google Scholar
73. Chaplygin, S.A. On gas jets (in Russian), Scientific Annals of the Imperial University of Moscow, Physico-Mathematical Division, 1902, 21, pp 1121.Google Scholar
74. Chaplygin, S.A. On the pressure exerted by a plane-parallel flow on obstructing bodies (Aeroplane theory) (in Russian), Mathematical Collections of Moscow, 1910, 28, pp 120166.Google Scholar
75. Ackroyd, J.A.D., Axcell, B.P. and Ruban, A.I. Early Developments of Modern Aerodynamics, Butterworth-Heinemann/AIAA, Oxford/RestonVA, 2001.Google Scholar
76. Busemann, A. Hodographenmethode der Gasdynamik, ZAMM, 1937, 17, pp 7379.Google Scholar
77. Hooker, S.G. The two-dimensional flow of compressible fluids at subsonic speeds past elliptic cylinders, ARC, R&M No 1684, 1935.Google Scholar
78. Oswatitsch, K. (Trans Kuerti, G.) Gas Dynamics, Academic Press, New York, 1956.Google Scholar
79. Sears, W.R. (Ed) General Theory of High Speed Aerodynamics; Vol VI, High Speed Aerodynamics and Jet Propulsion, Princeton University Press, 1954.Google Scholar
80. Bryan, G.H. The effect of compressibility on stream line motions, ACA, R&M No 555, 1918.Google Scholar
81. Bryan, G.H. The effect of compressibility on stream line motions. Part II, ACA, R&M No 640, 1919.Google Scholar
82. Vieille, P. Sur les discontinuités produites par la détente brusque des gaz comprimés, Comptes Rendus, 1899, 129, pp 12281230.Google Scholar
83. Lynam, E.J.H. Preliminary report on experiments on high tip-speed airscrew at zero advance, ACA, R&M No 596, 1919.Google Scholar
84. Caldwell, F.W. and Fales, E.N. Wind tunnel studies in aerodynamic phenomena at high speed, NACA Rep No 83, 1920.Google Scholar
85. Becker, J.V. The High-Speed Frontier. Case Histories of Four NACA Programs, 1920-1950, NASA SP-445, NASA, Washington DC, 1980.Google Scholar
86. Reed, S.A. Air reactions to objects moving at rates above the velocity of sound, with application to the air propeller, NACA, TM 168, 1922.Google Scholar
87. Douglas, G.P. and Wood, R.M. The effects of tip speed on airscrew performance. An experimental investigation of the performance of an airscrew over a range of speeds of revolution from “model’ speeds up to tip speeds in excess of the velocity of sound in air, ARC, R&M No 884, 1923.Google Scholar
88. Glauert, H. An aerodynamic theory of the airscrew, ARC, R&M No 786, 1922.Google Scholar
89. Douglas, G.P. and Coombes, L.P. The measurement of torque grading along an airscrew blade, ARC, R&M No 992, 1925.Google Scholar
90. Douglas, G.P. and Perring, W.G.A. Wind tunnel tests with high tip speed airscrews. The characteristics of the aerofoil section RAF 31a athigh speeds, ARC, R&M No 1086, 1927.Google Scholar
91. Douglas, G.P. and Perring, W.G.A. Wind tunnel tests with high tip speed airscrews. The characteristics of a bi-convex aerofoil at high speeds, ARC, R&M No 1091, 1927.Google Scholar
92. Douglas, G.P. and Perring, W.G.A. Wind tunnel tests with high tip speed airscrews. The characteristics of bi-convex No 2 aerofoil section at high speeds, ARC, R&M No 1123, 1927.Google Scholar
93. Douglas, G.P. and Perring, W.G.A. Wind tunnel tests with high tip speed airscrews. The characteristics of a conventional airscrew section, aerofoil R&M. 322, No 3, at high speeds, ARC, R&M No 1124, 1927.Google Scholar
94. Perring, W.G.A. Wind tunnel tests with high tip speed airscrews. The characteristics of airscrew section R&M. 322, No 4, and RAF 32, ARC, R&M No 1134, 1927.Google Scholar
95. Glauert, H. The effect of compressibility on the lift of an aerofoil, ARC, R&M No 1135, 1927. [See also Proc Roy Soc A, 1928, 118, pp 113119.]Google Scholar
96. Prandtl, L. Über Strömungen, deren Geschwindigkeiten mit der Schallgeschwindigkeit vergleichbar sind, J Aeronautical Research Institute, Tokyo Imperial University, 1930, 65, pp 1423.Google Scholar
97. Relf, E.F. An electrical method of tracing stream lines for the two-dimensional motion of a perfect fluid, ARC, R&M No 905, 1924.Google Scholar
98. Taylor, G.I. Report on progress during 1927-28 in calculation of flow of compressible fluid, and suggestions for further work, ARC, R&M No 1196, 1928.Google Scholar
99. Stanton, T.E. and Pannell, J.R. Similarity of motion in relation of the surface friction of fluids, Phil Trans Roy Soc A, 1914, 214, pp 199224.Google Scholar
100. Stanton, T.E., Pannell, J.R. and Marshall, D. Heat transmission over surfaces, ACA, R&M No 243, 1917.Google Scholar
101. Stanton, T.E. The development of a high speed wind channel for research in external ballistics, Proc Roy Soc A, 1931, 131, pp 122132.Google Scholar
102. Stanton, T.E. On the flow of gases at high speeds, Proc Roy Soc A, 1926, 111, pp 306339.Google Scholar
103. Prandtl, L. and Busemann, A. Näherungsverfahren zur zeichnerischen Ermittlung von ebenen Strömungen mit Überschallgeschwindigkeit, Stodola Festschrift, Zurich and Leipzig, 1929, pp 499509.Google Scholar
104. Stanton, T.E. A high-speed wind channel for tests on aerofoils, ARC, R&M No 1130, 1928.Google Scholar
105. Stanton, T.E. On the effect of air compression on drag and pressure distribution in cylinders of infinite aspect ratio, ARC, R&M No 1210, 1928.Google Scholar
106. Stanton, T.E. On the distribution of pressure over a symmetric Joukowski section at high speeds, ARC, R&M No 1280, 1929.Google Scholar
107. Briggs, L.J., Hull, G.F. and Dryden, H.L. Aerodynamic characteristics of airfoils at high speeds, NACA Rep No 207, 1925.Google Scholar
108. Briggs, L.J. and Dryden, H.L. Pressure distribution over airfoils at high speeds, NACA Rep No 255, 1927.Google Scholar
109. Briggs, L.J. and Dryden, H.L. Aerodynamic characteristics of twenty-four airfoils at high speeds, NACA Rep No 319, 1929.Google Scholar
110. Briggs, L.J. and Dryden, H.L. Aerodynamic characteristics of circular arc airfoils at high speeds, NACA Rep No 365, 1931.Google Scholar
111. Busemann, A. Profilmessungen bei Geschwindigkeiten nahe der Schallgeschwindigkeit (im Hinblick auf Luftschrauben), Jahrbuch der Wissenschaftlichen Gesellschaft für Luftfahrt, 1928, pp 9599.Google Scholar
112. Durand, W.F. (Ed) Aerodynamic Theory, Vol III, Springer, Berlin, 1935.Google Scholar
113. Stack, J. The NACA high-speed wind tunnel and tests of six propeller sections, NACA Rep No 463, 1933.Google Scholar
114. Stack, J. and Doenhoff, A.E. von Tests of 16 related airfoils at high speed, NACA Rep No 492, 1934.Google Scholar
115. Bailey, A. and Wood, S.A. Development of a high-speed induced wind tunnel, ARC, R&M No 1468, 1932.Google Scholar
116. Bailey, A. and Wood, S. A. Principles of the air injector, ARC, R&M No 1545, 1933.Google Scholar
117. Taylor, G.I. The flow of air at high speeds past curved surfaces, ARC, R&M No 1381, 1930.Google Scholar
118. Taylor, G.I. Some cases of flow of compressible fluids, ARC, R&M No 1382, 1930.Google Scholar
119. Ackeret, J. Luftkräfte auf Flügel, die mit der grösserer als Schallgeschwindigkeit bewegt werden, Zeit für Flugtechnik und Motorluftschiffahrt, 1925, 16, pp 7274.Google Scholar
120. Taylor, G.I. Applications to aeronautics of Ackeret’s theory of aerofoils moving at speeds greater than that of sound, ARC, R&M No 1467,1932.Google Scholar
121. Hooker, S.G. The pressure distribution and forces on thin aerofoil sections having sharp leading and trailing edges and moving with speeds greater than that of sound, ARC, R&M No 1721, 1936.Google Scholar
122. Schlichting, H. Tragflügelfheorie bei Überschallgeschwindigkeit, Luftfahrforschung, 1936, 13, pp 320335.Google Scholar
123. Busemann, A. Infinitesimale kegelige Überschallstromung, Schriften der Deutsche Akademie der Luftfahrtforschung, 7B, 1943, pp 105122.Google Scholar
124. Taunt, D.R. and Ward, G.N. Wings of finite aspect ratio at supersonic velocities, ARC, R&M No 2421, 1946.Google Scholar
125. Lighthill, M.J. The supersonic theory of wings of finite span, ARC, R&M No 2001, 1944.Google Scholar
126. Karman, T. von and Moore, N.B. Resistance of slender bodies moving with supersonic velocities, with special reference to projectiles, Trans ASME (J Appl Mech), 1932, 54, pp 303310.Google Scholar
127. Tsien, H.S. Supersonic flow over an inclined body of revolution, JAS, 1938, 5, pp 480483.Google Scholar
128. Taylor, G.I. and Maccoll, J.W. The air pressure on a cone moving at high speeds, Proc Roy Soc A, 1933, 139, pp 278297; 298-311.Google Scholar
129. Busemann, A. Drücke auf kegelförmige Spitzen bei Bewegung mit Überschallgeschwindigkeit, ZAMM, 1929, 9, pp 496498.Google Scholar
130. Stainforth, G.H. British methods of high speed flying and training of pilots, Reale Accademia D’Italia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 120139.Google Scholar
131. Ricardo, H.R. High altitude engines: thermodynamics and carburation, Reale Accademia D’Italia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 571583.Google Scholar
132. Prandtl, L. Allgemeine Überlegungen über die Strömung zusammen-drückbarer Flüssigkeiten, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocita in Aviazione, Roma, 1935, Rome, 1936, pp 169197.Google Scholar
133. Taylor, G.I. Well established problems in high speed flow, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 198214.Google Scholar
134. Karman, T. de The problem of resistance in compressible fluids, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Avi azione, Roma, 1935, Rome, 1936, pp 232277.Google Scholar
135. Douglas, G. P. Research on model airscrews at high speed, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 460486.Google Scholar
136. Ackeret, J. Windkanäle für hohe Geschwindigkeiten, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 487562.Google Scholar
137. Jacobs, E.N. Methods employed in America for the experimental investigation of aerodynamic phenomena at high speeds, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocita in Aviazione, Roma, 1935, Rome, 1936, pp 369401.Google Scholar
138. Stack, J. The compressibility burble, NACA TN 543, 1935.Google Scholar
139. Stack, J., Lindsey, W.F. and Littell, R.E, The compressibility burble and the effect of compressibility on the pressures and forces acting on an airfoil, NACA Rep No 646, 1938.Google Scholar
140. Busemann, A. Aerodynamischer Auftrieb bei Überschallgeschwindigkeit, Reale Accademia D’ltalia, Fondazione Alessandro Volta; Convegno di Scienze Fisiche, Matematiche e Naturali; Tema: Le Alte Velocità in Aviazione, Roma, 1935, Rome, 1936, pp 328360; Luftfahrtforschung, 1935, 12, pp 210-220.Google Scholar
141. Busemann, A. Infinitesimale kegelige Überschallstromung, Jahrbuch der Deutschen Akademie der Luftfahrtforschung, 1942, pp 455470.Google Scholar
142. Karman, T. von with Edson, L. The Wind and Beyond, Little, Brown and Co, Boston, 1967.Google Scholar
143. Karman, T. von Aerodynamics, Cornell University Press, 1954.Google Scholar
144. Pohlhausen, E. Der Wàrmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wàrmeleitung, ZAMM, 1921, l, pp 115121.Google Scholar
145. Crocco, L. Sulla transmissione del calore da una lamina piana a un fluido scorrente ad alta velocità, L’Aerotecnica, 1932, 12, pp 181197.Google Scholar
146. Busemann, A. Gasströmung mit laminarer Grenzschicht entlang einer Platte, ZAMM, 1935, 15, pp 2325.Google Scholar
147. Crocco, L. Una caratteristica transformazione della equazioni dello strato limite nei gas, Atti di Guidonia, 1939, 7, pp 105120.Google Scholar
148. Hantzsche, W. and Wendt, H. Zum Kompressibilitàtseinfluss bei der laminaren Grenzschicht der ebenen Platte, Jahrbuch der Deutschen Akademie der Luftfahrtforschung I, 1940, pp 517521.Google Scholar
149. Hantzsche, W. and Wendt, H. Die laminare Grenzschicht an den ebenen Platte mit und ohne Wàrmeübergang unter Berücksichtigung der Kompressibilitàt, Jahrbuch der Deutschen Akademie der Luftfahrtforschung I, 1942, pp 4050.Google Scholar
150. Mises, R.M.E. von Bemerkungen zur Hyrodynamik, ZAMM, 1927, 7, pp 425431.Google Scholar
151. Karman, T. von and Tsien, H.S. Boundary layer in compressible fluids, JAS, 1938, 5, pp 227232.Google Scholar
152. Emmons, H.W. and Brainerd, J.G. Temperature effects in a laminar compressible fluid boundary layer along a flat plate, Trans ASME (J Appl Mech), 1941, 63, pp 105110.Google Scholar
153. Brainerd, J.G. and Emmons, H.W. Effect of variable viscosity on boundary layers, with a discussion of drag measurement, Trans ASME (J Appl Mech), 1942, 64, pp 16.Google Scholar
154. Young, A.D. Note on the effect of compressibility on Jones’ momentum method of measuring profile drag, ARC, R&M No 1881, 1939.Google Scholar
155. Young, A.D. Note on momentum methods of measuring profile drags at high speeds, ARC, R&M No 1963, 1940.Google Scholar
156. Lock, C.N.H., Hilton, W.F. and Goldstein, S. Determination of profile drag at high speeds by a Pitot traverse method, ARC, R&M No 1971, 1940.Google Scholar
157. Lock, C.N.H. Problems of high speed flight as affected by compress ibility, JRAeS, 1938, 42, pp 193228.Google Scholar
158. Bailey, A. and Wood, S.A. The development of a high speed induced wind tunnel of rectangular cross-section, ARC, R&M No 1791, 1937.Google Scholar
159. Bailey, A. and Wood, S.A. Further development of a high-speed wind tunnel of rectangular cross-section, ARC, R&M No 1853, 1938.Google Scholar
160. JRAeS, January 1966, 70, (661), Centenary Journal.Google Scholar
161. Boyne, W.J. and Lopez, D.S. (Eds) The Jet Age. Forty Years of Jet Aviation, Smithsonian Institution, Washington DC, 1979.Google Scholar
162. Armstrong, F.W. The aero engine and its progress — fifty years after Griffith, Aeronaut J, 1976, 80, pp 499520.Google Scholar
163. Hooker, S.G. Not Much of an Engineer, Airlife, Shrewsbury, 1984.Google Scholar
164. Gunston, W.T. The Development of Jet and Turbine Aero Engines (Second Edition), Patrick Stevens, Sparkford, Nr Yeovil, Somerset, 1997.Google Scholar
165. Schlaifer, R. and Heron, S.D. Development of Aircraft Engines and Fuels, Harvard University, Cambridge, Mass, 1950.Google Scholar
166. Whittle, F. Jet — The Story of a Pioneer, Frederick Muller, London, 1953.Google Scholar
167. Golley, J. Whittle — The True Story, Airlife, Shrewsbury, 1987.Google Scholar
168. Ermenc, J.J. (Ed). Interviews with German Contributors to Aviation History, Meckler, Westport CT, 1990.Google Scholar
169. James, D.N. Gloster Aircraft since 1917, Putnam, London, 1971.Google Scholar
170. Gunston, W.T. Early jet aircraft, Aeroplane Monthly, 2001, 29, (5), pp 5370.Google Scholar
171. Jackson, A.J. De Havilland Aircraft since 1909, Putnam, London, 1962.Google Scholar
172. Griffith, A.A. The phenomena of rupture and flow in solids, Phil Trans Roy Soc A, 1921, 221, pp 163198.Google Scholar
173. Bridgman, L. (Ed) Jane’s All the World’s Aircraft 1945/46, Samson Low Marston, London, 1946.Google Scholar
174. Whittle, F. Propulsion of aircraft, Patent Specification No 347206, HMSO, London, 1930.Google Scholar
175. Hawthorne, W. The early history of the aircraft gas turbine in Britain, Notes Rec R Soc London, 1991, 45, pp 79108.Google Scholar
176. Whittle, F. The early history of the Whittle jet propulsion gas turbine (The First James Clayton Lecture), Proc Inst Mech Eng, 1945, 12, pp 419435.Google Scholar
177. Hawthorne, W. Aircraft propulsion from the back room, Aeronaut J, 1978, 82, pp 93108.Google Scholar
178. Brodie, J.L.P. Frank Bernard Halford 1894–1955, JRAeS, 1959, 63, pp 194205.Google Scholar
179. Griffith, A.A. An aerodynamic theory of turbine design, Unpublished RAE Rep H1111, ARC T 2317, 1926.Google Scholar
180. Hawthorne, W., Cohen, H. and Howell, A.R. Hayne Constant, Biographical Memoirs of Fellows of the Royal Society, 1973, 19, pp 269279.Google Scholar
181. Feilden, G.B.R. and Hawthorne, W. Sir Frank Whittle, OM, KBE, Biographical Memoirs of Fellows of the Royal Society, 1998, 44, pp 435452.Google Scholar
182. Rubbra, A. A. Alan Arnold Griffith, Biographical Memoirs of Fellows of the Royal Society, 1964, 10, pp 117136.Google Scholar
183. Saunders, O. David MacLeish Smith, Biographical Memoirs of Fellows of the Royal Society, 1987, 33, pp 605617.Google Scholar
184. Young, P.H.J., Ha Worth, L., Pearson, H., Wilde, G.L. and Ffowcs-Williams, J.E. Stanley George Hooker, Biographical Memoirs of Fellows of the Royal Society, 1986, 32, pp 277319.Google Scholar
185. Strang, W.J. and Lewis, G.M. Pierre Young, Biographical Memoirs of Fellows of the Royal Society, 1988, 34, pp 9851001.Google Scholar
186. Howell, A.R. Griffith’s early ideas on turbomachinery aerodynamics, Aeronaut J, 1976, 80, pp 521529.Google Scholar
187. Betz, A. Axiallader, Jahrbuch der Deutschen Luftfahrtforschung, Lilienthal-Gesellschaft für Luftfahrtforschung II, 1938, pp 183186.Google Scholar
188. Encke, W. Untersuchungen an Modellräder von Axialgeblàsen, Aero-dynamische Versuchsanstalt Göttingen, Institut für Strömungsmaschinen, ZWB, M84, No 3135, 1944, pp 1–28.Google Scholar
189. Holder, D.W. The high-speed laboratory of the Aerodynamics Division, NPL, ARC, R&M No 2560, 1946.Google Scholar
190. Lukasiewicz, J. Supersonic diffusers, ARC, R&M No 2501,1946.Google Scholar
191. Busemann, A. Das Abreissen der Grenzschicht bei Annäherung an die Schallgeschwindigkeit, Jahrbuch der Deutschen Akademie der Luftfahrtforschung I, 1940, pp 539541.Google Scholar
192. Mair, W.A. (Ed) Research on high speed aerodynamics at the Royal Aircraft Establishment from 1942 to 1945, ARC, R&M No 2222, 1950.Google Scholar
193. Tsien, H.S. Two-dimensional subsonic flow of compressible fluids, JAS, 1939, 6, pp 399407.Google Scholar
194. Karman, T. von Compressibility effects in aerodynamics, JAS, 1941, 8, pp 337356.Google Scholar
195. Temple, G. and Yarwood, J. The approximate solution of the hodograph equations for compressible flow, Unpublished RAE Rep No SME 3201, ARC 6107, 1942.Google Scholar
196. Goldstein, S. and Young, A.D. The linear perturbation theory of compressible flow, with applications to wind-tunnel interference, ARC, R&M No 1909, 1943.Google Scholar
197. Göthert, B.H. Ebene und ràumliche Stromung bei hohen Unterschallgeschwindigkeiten, Berichte der Lilienthal-Gesellschaft für Luftfahrtforschung, 1940, 127, pp 97101; Jahrbuch der Deutschen Akademie der Luftfahrtforschung, 1941, pp 156-157.Google Scholar
198. Thom, A. Blockage corrections and choking in a closed high-speed tunnel, ARC, R&M No 2033, 1943.Google Scholar
199. Loftin, L. Quest for performance. The evolution of modern aircraft, NASA SP 468, NASA, Washington DC, 1985.Google Scholar
200.THE STAFF OF THE NPL HIGH SPEED TUNNEL Measurements of force coefficients on the aerofoils EC 1240 and EC 1240/0640 in the high speed tunnel at the National Physical Laboratory, ARC, R&M No 2246, 1940.Google Scholar
201. Pearcey, H.H. and Beavan, J.A. Force and pressure coefficients up to Mach number 0.87 on the Goldstein roof-top section 1442/1547, ARC, R&M No 2346, 1946.Google Scholar
202. Ackeret, J., Feldmann, F. and Rott, N. Untersuchungen an Verdichtungsstössen und Grenzschichten in schnell bewegten Gasen, Mitteilungen aus dem Institut für Aerodynamik an der Eidgenössische Technische Hochschule, Zürich, 1946, No 10.Google Scholar
203. Liepmann, H.W. The interaction between boundary layer and shock waves in transonic flow, JAS, 1946, 13, pp 623637.Google Scholar
204. Fage, A. and Sargent, R.F. Shock-wave and boundary-layer phenomena near a flat plate, Proc Roy Soc A, 1947, 190, pp 120.Google Scholar
205. Hilton, W.F. Subsonic and supersonic tests on a 7fi per cent, bi-convex aerofoil, ARC, R&M No 2196, 1944.Google Scholar
206. Pruden, F.W. Tests of a double-wedge aerofoil with a 30 per cent control flap over a range of supersonic speeds, ARC, R&M No 2197, 1945.Google Scholar
207. Stack, J. Compressible flows in aeronautics (Eighth Wright Brothers lecture), JAS, 1945, 12, (2), pp 127148.Google Scholar
208. Abbott, I.H. and Doenhoff, A.E. von, Theory of Wing Sections, McGraw-Hill, New York, 1949.Google Scholar
209. Baals, D.D. and Corliss, W.R. Wind Tunnels of NASA, NASA SP-440, NASA, Washington DC, 1981.Google Scholar
210. Jones, R.T. Wing plan forms for high-speed flight, NACA TN 1033, 1946.Google Scholar
211. Jones, RT. Thin oblique airfoils at supersonic speed, NACA TN 1107, 1946.Google Scholar
212. Jones, R.T. Properties of low-aspect ratio pointed wings at speeds below and above the speed of sound, NACA TN 1032, 1946.Google Scholar
213. Hallion, R.P. Lippisch, Gluhareff, and Jones: The emergence of the delta planform and the origins of the sweptwing in the United States, Aerospace Historian, 1979, 26, (3), pp 110.Google Scholar
214. Munk, M.M. Note on the relative effect of dihedral and the sweep back of airplane wings, NACA TN 177, 1924.Google Scholar
215. Munk, M.M. The aerodynamic forces on airship hulls, NACA Rep No 184, 1924.Google Scholar
216. Karman, T. von The similarity law of transonic flow, J Mathematics and Physics, 1947, 26, pp 182190.Google Scholar
217. Betz, A. Sonderaufgaben der aerodynamischen Forschung, Schriften der Deutschen Akademie der Luftfahrtforschung, 1020/409, 1940.Google Scholar
218. Ludwieg, H. Versuchsergebnisse Pfeilflügel bei hohen Geschwindigkeiten, Berichte der Lilienthal-Gesellschaft für Luftfahrt forschung, 1940, 127, p 44.Google Scholar
219. Betz, A. (Senior Author). FIAT Review of German Science; Hydro and Aerodynamics, Office of Military Government for Germany, Field Information Agencies Technical, 1948.Google Scholar
220. Lippisch, A. The Delta Wing. History and Development, Iowa State University Press, 1981.Google Scholar
221. Morgan, H. Me262. Stormbird Rising, Osprey, London, 1994.Google Scholar
222. Voigt, W. Gestation of the Swallow, Air Enthusiast, 1976, 10, (3), pp 135139, 153.Google Scholar
223. Lippisch, A. and Beuschausen, W. Druckverteilungsmessungen bei Hochgeschwindigkeit und Schràganblasung, Deutsche Luftfahrtforschung, Forschungsbericht 1669, 1942.Google Scholar
224. Smelt, R. A critical review of German research on high speed airflow, JRAeS, 1946, 50, pp 899934.Google Scholar
225. Wieselsberger, C. Über den Einfluss der Windkanalbegrenzung auf den Widerstand insbesondere im Bereiche der kompressiblen Strömung, Luftfahrtforschung, 1942, 19, pp 124128.Google Scholar
226. Barnes, C.H. Handley Page Aircraft since 1907, Putnam, London, 1976.Google Scholar
227. Green, W. Warplanes of the Third Reich, Macdonald, London, 1970.Google Scholar
228. Brown, E.M. Wings of the Luftwaffe, Macdonald and Jane’s, London, 1977.Google Scholar