Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T21:13:45.990Z Has data issue: false hasContentIssue false

Plume flow characteristics of rectangular exhaust nozzles in a micro-jet engine

Published online by Cambridge University Press:  24 January 2024

C. Lee
Affiliation:
Jeonbuk National University, Jeonju, South Korea
S.M. Choi*
Affiliation:
Jeonbuk National University, Jeonju, South Korea
*
Corresponding author: S.M. Choi; Email: csman@jbnu.ac.kr

Abstract

The flow characteristics of the plume ejected from a micro-jet engine’s rectangular exhaust nozzle have been studied by conducting experimental and numerical analyses. The radiated infrared signature of a plume ejected from a rectangular exhaust nozzle with a large aspect ratio in a jet propulsion engine is known to be significantly lower than that of a plume ejected from a circular exhaust nozzle. The velocity and temperature distributions, which are the flow characteristics of the jet, were measured to investigate this phenomenon. For this purpose, we installed a circular nozzle and a rectangular exhaust nozzle with an aspect ratio of five to a micro-jet engine. The results showed that the plume spreads wider as it moves away from the nozzle exit and that the velocity rapidly decreases in the case of the rectangular nozzle, contrary to the case of the circular nozzle. Similar tendencies were observed for the temperature distribution and magnitude of the ejected plume. Thus, we concluded that the flow distribution caused by the nozzle shape induces a greater drop in the radiated infrared signature of the plume ejected from the rectangular nozzle than the circular nozzle. Flow analysis was conducted to evaluate the flow in and outside the exhaust nozzle; results similar to those of the experiment were obtained. These results show that the ejecting jet has a greater mixing effect on the air outside when using the rectangular nozzle than the circular nozzle.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dimotakis, P.E., Miake lye, R.C. and Papantoniou, D.A. Structure and dynamics of round turbulent jets, Phys. Fluids, 1983, 26, (11), pp 3185.CrossRefGoogle Scholar
Yule, A.J. Large-scale structure in the mixing layer of a round jet, J. Fluid Mech., 1978, 89, (3), pp 413432.CrossRefGoogle Scholar
Crow, S.C. and Champagne, F.H. Orderly structure in jet turbulence, J. Fluid Mech., 1971, 48, (3), pp 547591.CrossRefGoogle Scholar
Mahulikar, S.P., Sonawane, H.R. and Rao, G.A. Infrared signature studies of aerospace vehicles, Prog. Aerospace Sci., 2007, 43, (7-8), pp 218245.CrossRefGoogle Scholar
Lamb, M., Taylor, J.G. and Frassinelli, M.C. Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with External Shelf, NASA technical memorandum 4719, 1996.Google Scholar
Sfeir, A.A. The velocity and temperature fields of rectangular jets, Int. J. Heat Mass Transfer, 1976, 19, (11), pp 12891297 CrossRefGoogle Scholar
Gutmark, E., Schadow, K.C. and Wilson, K.J. Jet dynamics in supersonic combustion, J. Propul. Power, 1989, 5, (5), pp 529533.CrossRefGoogle Scholar
Ehsan, F., Maddahian, R., Faghani, P. and Farhanieh, B. Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio, Arch. Appl. Mech., 2010, 80, (7), pp 727745.Google Scholar
Quinn, W.R. Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio, Exp. Therm. Fluid Sci., 1992, 5, (2), pp 203215.CrossRefGoogle Scholar
An, C.H., Kang, D.W., Baek, S.T., Myong, R.S., Kim, W.C. and Choi, S.M. Analysis of plume infrared signature of S-shaped nozzle configurations of aerial vehicle, J. Aircraft, 2016, 53, (6), pp 17681778.CrossRefGoogle Scholar
Gu, B.C., Baek, S.W., Jegal, H.W., Choi, S.M. and Kim, W.C. Infrared signature characteristic of a microturbine engine exhaust plume, Infrared Phys. Technol., 2017, 86, pp 1122.CrossRefGoogle Scholar
Choi, S.M., Kim, S., Myong, R.S. and Kim, W. Experimental investigation of infrared signal characteristics in a micro-turbojet engine, Aeronaut. J., 2019, 123, (1261), pp 340355.CrossRefGoogle Scholar
Pan, C.W., Zhang, J.Z. and Shan, Y. Effects of exhaust temperature on helicopter infrared signature, Appl. Therm. Eng., 2013, 51, (1-2), pp. 529538.Google Scholar
Zografos, A.I., Martin, W.A. and Sunderland, J.E. Equations of properties as a function of temperature for seven fluids, Comput. Methods Appl. Mech. Eng., 1987, 61, (2), pp 177187.CrossRefGoogle Scholar
Dippold, V.F. Design and analyses of high aspect ratio nozzles for distributed propulsion acoustic measurements, 34th AIAA Applied Aerodynamics Conference, Washington, D.C., June 2016, AIAA 2016-3876.CrossRefGoogle Scholar
Ho, C.M. and Gutmark, E. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet, J. Fluid Mech., 1987, 179, pp 383405.CrossRefGoogle Scholar
Zaman, K.B.M.Q. Asymptotic spreading rate of initially compressible jets experiment and analysis, Phys. Fluids, 1998, 10, (10), pp 26522660.CrossRefGoogle Scholar