Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-09T02:20:00.207Z Has data issue: false hasContentIssue false

New design of materials, order and thicknesses of an aircraft windshield behaviour layers to increase its resistance against repeated bird impacts

Published online by Cambridge University Press:  04 June 2024

M. Rezaei
Affiliation:
Department of Mechanical Engineering, AmirKabir University of Technology, Tehran, Iran
B. Arezoo*
Affiliation:
Department of Mechanical Engineering, AmirKabir University of Technology, Tehran, Iran
S. Ziaei-Rad
Affiliation:
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
*
Corresponding author: B. Arezoo; Email: arezoo@aut.ac.ir

Abstract

There are instances when an aircraft encounters a bird’s flock or faces a heavy hailstorm, causing the windshield to sustain consecutive impacts. Therefore, the investigation of windshield resistance against repeated impacts is crucial. In this research, various tests such as tensile, split Hopkinson pressure bar (SHPB), and three-point bending are conducted to extract the mechanical properties of the materials used in a five-layers windshield under high strain rates. Using this information, the bird impact on the windshield is simulated using the smooth particle hydrodynamics (SPH) method, and the results are compared with real bird impact test outcomes, and the validation of this simulation is confirmed. The simulation of two consecutive bird strikes indicates the current windshield lacks sufficient resistance against successive dual impacts; in such scenarios, the second bird penetrates the windshield after breaking it and tearing the interlayer. Considering new materials and thicknesses for each windshield layer, a Taguchi experimental design method is employed to examine various layer arrangements with different materials and thicknesses. The configurations in which the windshield can withstand a maximum of three bird impacts in succession are identified. Subsequently, using the “the smaller, the better” criterion in the Taguchi optimisation approach, the configuration that not only prevents bird penetration but also minimises the maximum strain in the inner layer is selected as the desired outcome. Thus, a new five-layer windshield with new materials and thicknesses is presented, which is resistant to the repeated collision of up to three birds, tearing in the interlayer and bird penetration does not happen.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhou, Y., Sun, Y. and Cai, W. Bird-striking damage of rotating laminates using SPH-CDM method, Aerospace Sci. Technol., 2019, 84, pp 265272. https://doi.org/10.1016/j.ast.2018.10.009 CrossRefGoogle Scholar
Zhang, C. and Lu, G. Impact dynamics for advanced aerospace materials and structures, J. Aerospace Eng., 2023, 36, (4), pp 20222023. https://doi.org/10.1061/JAEEEZ.ASENG-5047 CrossRefGoogle Scholar
Lissaman, P.B.S. and Shollenberger, C.A. Formation flight of birds, Science, 1970, 168, (3934), pp 10031005. https://doi.org/10.1126/science.168.3934.1003 CrossRefGoogle ScholarPubMed
Jha, A.K., Sathyamoorthy, S. and Prakash, V. Bird strike damage and analysis of UAV’s airframe, Proc. Struct. Integr., 2019, 14, pp 416428. https://doi.org/10.1016/j.prostr.2019.05.051 Google Scholar
Hedayati, R. Bird Modeling and Analysis of its Impact on the Rear Tail Edge of the Plane, Isfahan University of Technology, 2011.Google Scholar
Heimbs, S. Computational methods for bird strike simulations: A review, Comput. Struct., 2011a, 89, (23–24), pp 20932112. https://doi.org/10.1016/j.compstruc.2011.08.007 CrossRefGoogle Scholar
Liu, B., Xu, T., Xu, X., Wang, Y., Sun, Y. and Li, Y. Energy absorption mechanism of polyvinyl butyral laminated windshield subjected to head impact: Experiment and numerical simulations, Int. J. Impact Eng., 2016, 90, pp 2636. https://doi.org/10.1016/j.ijimpeng.2015.11.010 CrossRefGoogle Scholar
Niruban Projoth, T., Rohith Renish, R., Sivarathinabala, M. and Vinulakshmi, K. Bird strike analysis on aircraft windshield, Int. J. Mech. Eng. Technol., 2018, 9, (9), pp 12561262.Google Scholar
Liu, J., Li, Y., Yu, X., Gao, X. and Liu, Z. Design of aircraft structures against threat of bird strikes, Chin. J. Aeronaut., 2018, 31, (7), pp 15351558. https://doi.org/10.1016/j.cja.2018.05.004 CrossRefGoogle Scholar
Khan, S.H., Sharma, A.P., Kitey, R. and Parameswaran, V. Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates, Int. J. Impact Eng., 2018, 119, pp 1425. https://doi.org/10.1016/j.ijimpeng.2018.04.011 CrossRefGoogle Scholar
Firdaus, M., Prayoga, A. and Jusuf, A. Multimaterial bird model for bird impact simulation using SPH method, J. Phys. Conf. Ser., 2018, 1130, (1). https://doi.org/10.1088/1742-6596/1130/1/012039 CrossRefGoogle Scholar
Mohaghegian, I., Wang, Y., Zhou, J., Yu, L., Guo, X., Yan, Y., Charalambides, M. and Dear, J.P. Soft impact of laminated glass used for aircraft windshields , 2018, pp 245246.Google Scholar
Hedayati, R. and Ziaei-Rad, S. New bird model for simulation of bird strike on various layups used in transparent components of rotorcrafts, J. Aerospace Eng., 2014, 27, (1), pp 7685. https://doi.org/10.1061/(asce)as.1943-5525.0000225 CrossRefGoogle Scholar
Dar, U.A. and Zhang, W. Polymer based aerospace structures under high velocity impact applications; experimental, constitutive and finite element analysis, J. Mech. Sci. Technol. 2015, 29, (10), pp 42594265. https://doi.org/10.1007/s12206-015-0922-3 CrossRefGoogle Scholar
Cwiklak, J. Influence of a bird model shape on the bird impact parameters, Facta Universitatis Ser. Mech. Eng., 2020, 18, (4), pp 639651. https://doi.org/10.22190/FUME200703037C CrossRefGoogle Scholar
Ćwiklak, J., Kobiałka, E. and Goś, A. Experimental and numerical investigations of bird models for bird strike analysis, Energies, 2022, 15, (10). https://doi.org/10.3390/en15103699 CrossRefGoogle Scholar
Kholoosi, F. and Alavi Nia, A. International scientific and technical conference on integrated computer technologies in mechanical engineering -synergetic engineering, ICTM 2021, J. Brazilian Soc. Mech. Sci. Eng., 2023, 45, (424). https://doi.org/10.1007/s40430-023-04333-4 CrossRefGoogle Scholar
Rezaei, M., Arezoo, B. and Ziaei-Rad, S. International Journal of Impact Engineering Redesign an aircraft windshield to improve its mechanical resistance against simultaneous bird impacts, Int. J. Impact Eng., 2024, 184, p 104811. https://doi.org/10.1016/j.ijimpeng.2023.104811 CrossRefGoogle Scholar
Zhu, S., Wang, Y., Tong, M. and Pan, X. Numerical simulation of bird impact on fibre metal laminates, Polym. Polym. Compos., 2014, 22, (2), pp 147156. https://doi.org/10.1177/096739111402200210 Google Scholar
Zhou, Y., Sun, Y. and Huang, T. SPH-FEM design of laminated plies under bird-strike impact, Aerospace, 2019, 10. https://doi.org/10.3390/aerospace6100112 Google Scholar
Zhou, Y., Sun, Y. and Huang, T. Bird-strike resistance of composite laminates with different materials, Materials, 2020, 13, (1). https://doi.org/10.3390/ma13010129 Google Scholar
Heimbs, S. Computational methods for bird strike simulations: A review, Comput. Struct., 2011b, 89, (23), pp 20932112. https://doi.org/10.1016/j.compstruc.2011.08.007 CrossRefGoogle Scholar
Chen, S.Y., van de Waerdt, W. and Castro, S.G.P. Design for bird strike crashworthiness using a building block approach applied to the Flying-V aircraft, Heliyon, 2023, 9, (4), p e14723. https://doi.org/10.1016/j.heliyon.2023.e14723 CrossRefGoogle Scholar
American Society for Testing and Materials. ASTM D638-14, standard practice for preparation of metallographic specimens, ASTM Int., 2016, 82, (C), pp 1–15. https://doi.org/10.1520/D0638-14.1 Google Scholar
Khosravani, M.R. and Weinberg, K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete, Constr. Build. Mater., 2018, 190, pp 12641283. https://doi.org/10.1016/j.conbuildmat.2018.09.187 CrossRefGoogle Scholar
Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed, Wiley, 1980, New York, p 672. https://www.wiley.com/en-sg/Viscoelastic+Properties+of+Polymers%2C+3rd+Edition-p-9780471048947 Google Scholar
Tschoegl, N.W. The phenomenological theory of linear viscoelastic behavior, in Materials Chemistry and Physics, 1st ed, vol. 26, (3–4), Springer Berlin, 1989, Heidelberg. https://doi.org/10.1016/0254-0584(90)90029-a Google Scholar
Standard Test Methods for Strength of Glass by Flexure (Determination of Modulus of Rupture). ASTM Int., 2000, 95, (Reapproved), pp 19.Google Scholar
Johnson, G.R. and Holmquist, T.J. An improved computational constitutive model for brittle materials, 2008, 981, (1), pp 981984. https://doi.org/10.1063/1.46199 CrossRefGoogle Scholar
Pashmforoush, F. and Esmaeilzare, A. Experimentally validated finite element analysis for evaluating subsurface damage depth in glass grinding using Johnson-Holmquist model, Int. J. Precis. Eng. Manuf., 2017, 18, (12), pp 18411847. https://doi.org/10.1007/s12541-017-0213-2 CrossRefGoogle Scholar
Grujicic, M., Bell, W.C., Pandurangan, B., Cheeseman, B.A., Fountzoulas, C., Patel, P., Templeton, D.W. and Bishnoi, K.D. The effect of high-pressure densification on ballistic-penetration resistance of a soda-lime glass, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2011, 225, (4), pp 298315. https://doi.org/10.1177/1464420711412849 CrossRefGoogle Scholar
Siviour, C.R. and Jordan, J.L. High strain rate mechanics of polymers: A review, J. Dyn. Behav. Mater., 2016, 2, (1), pp 1532. https://doi.org/10.1007/s40870-016-0052-8 CrossRefGoogle Scholar
Ganzenmüller, G.C., Langhof, T. and Hiermaier, S. A Constant Acoustic Impedance Mount for Sheet-Type Specimens in the Ten-. 2018, 02064, pp 10–13. https://doi.org/10.1051/epjconf/201818302064 CrossRefGoogle Scholar
Song, , B., Chen, , W., Antoun, , B. R. and Frew, , D. J. “Determination of early flow stress for ductile specimens at high strain rates by using a SHPB,Exp. Mech., 2007, 47, (5), pp 671679. https://doi.org/10.1007/s11340-007-9048-6CrossRefGoogle Scholar
Bagaria, M.K. Experimental and Numerical Simulation of Split Hopkin Pressure Bar test on Borosilicate Glass” Michigan Technological University, 2019. [Online]. Available: https://digitalcommons.mtu.edu/etdr/776Google Scholar
Liao, Z., Yao, X., Zhang, L., Hossain, M., Wang, J. and Zang, S. Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates, Int. J. Impact Eng., 2019, 129, pp 152167. https://doi.org/10.1016/j.ijimpeng.2019.03.005 CrossRefGoogle Scholar
Supplementary material: File

Rezaei et al. supplementary material

Rezaei et al. supplementary material
Download Rezaei et al. supplementary material(File)
File 3 MB