Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T00:34:44.917Z Has data issue: false hasContentIssue false

Interaction of a vortex with a non-linear shear flow

Published online by Cambridge University Press:  04 July 2016

F. Albers
Affiliation:
Max-planck-institut für Strömungsforschung, Göttingen, Germany
D. W. Schmidt
Affiliation:
Max-planck-institut für Strömungsforschung, Göttingen, Germany
W. J. Wagner
Affiliation:
Max-planck-institut für Strömungsforschung, Göttingen, Germany

Extract

Experiments in the wake of a circular rod at a Reynolds number Re=5·104 have shown that single vortex-like structures can leave the wake and may be detected in the ambient potential flow. This experimental finding suggested the theoretical investigation of the interaction between a vortex and a shear flow. Lin has calculated the average acceleration acting on the vortex at the time t = 0. In the following a finite-difference scheme is described which, in detail, determines the local components of the acceleration and the temporal development of the flow.

Type
Technical Notes
Copyright
Copyright © Royal Aeronautical Society 1980 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmidt, D. W., Schmidt, W. and Wagner, W. J. Eine Metallfilmsonde zur Messung von kleinen und schnellen Strömungstemperaturschwankungen. Wärme- und Stoff- übertragung, Vol 6, pp 221227, 1973.Google Scholar
2. Schmidt, D. W. and Wagner, W. J. Measurement of the temperature fluctuations in turbulent wakes, Z. Flugwiss., Vol 22, pp 1014, 1974.Google Scholar
3. Wagner, W. J. Experimentelle Untersuchung der Nachlaufströmungen im Nahbereich hinter Rundstäben mittels Messung der Tetnperaturschwankungen. Dissertation, Göttingen 1976. Also: Mitt. MPI Strömungsforschung AVA Göttingen, Nr. 62,1976.Google Scholar
4. Albers, F., Schmidt, D. W. and Wagner, W. J. Untersuchung der Wirbelstrukturen in einem Zylinder-Nachlauf mittels Messung der Strömungstemperatur-Schwankungen. 50 Jahre Max-Planck-Institut für Strömungsforschung 1925-1975, Göttingen, 1976.Google Scholar
5. Lin, C. C. On the stability of two-dimensional parallel flows. Part II.—Stability in an inviscid fluid. Quart Appl Math, Vol III, pp 218234, 1945.Google Scholar
6. Albers, F. Über das dynamische Verhalten eines Wirbels in einem Scherfeld. Dissertation, Göttingen, 1976. Also: Max-Planck-Institut für Strömungsforschung, Bericht 2/1976.Google Scholar
7. Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part 1. J Computational Physics 1, pp 119143, 1966.Google Scholar
8. Dorn, W. S. and McCracken, D. D. Numerical methods with Fortran IV case studies. John Wiley and Sons, New York, 1972.Google Scholar