Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T13:57:21.595Z Has data issue: false hasContentIssue false

Effect on damage of aircraft windshield impacted by light UAV with different postures

Published online by Cambridge University Press:  03 August 2023

X.H. Lu*
Affiliation:
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Y.C. Zhang
Affiliation:
Shanghai Aircraft Airworthiness Certification Center of CAAC, Shanghai, China
Z.G. Zhang
Affiliation:
Shanghai Aircraft Airworthiness Certification Center of CAAC, Shanghai, China
*
Corresponding author: X.H. Lu; Email: luxiaohua@nuaa.edu.cn

Abstract

To study the performance of the main windshield of a commercial aircraft that has been verified to be airworthy by bird-strike tests against unmanned aerial vehicle (UAV) impact at high-speed, a typical light UAV with various possible flight postures and the main windshield of a commercial aircraft are considered. The transient impact responses at critical moments, energy change and contact force of a multi-layer windshield impacted by a UAV with different postures are investigated using a simulation method based on the models verified by the high-speed impact test between the whole UAV and the full-size nose. This study shows that the flight posture of the UAV has a significant effect on the damage to the windshield. When the abdomen of a typical light UAV maintains a posture parallel to the plane of the windshield, the high-speed impact would cause catastrophic damage to the windshield and no longer be airworthy. Simultaneously, the damage to the aircraft windshield caused by UAV collision is far more serious than that caused by bird strikes under similar collision conditions. The mass-concentrated components of the UAV and their high-hardness characteristics are the main factors of affecting multi-layer glass of windshield damage. The degree of damage to the windshield is positively related to the absorbed energy rather than the impact contact force. In this study, the impact simulation results between the windshield and UAV with different flight postures are verified qualitatively by testing, which provides a rational understanding and technical pre-research support for emerging and increasingly frequent potential safety hazards in air transport practice.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, X.C. Simulation and safety assessment of collisions between drones and civil aircraft, Nanjing University of Aeronautics and Astronautics, Nanjing China, 2019.Google Scholar
Quan, Q., Li, G., Bai, Y.Q., Fu, R., Li, M., Ke, C. and Cai, K. Low altitude UAV traffic management: An introductory overview and proposal, Acta Aeronaut. Astronaut. Sin., 2020, 41, (01), pp 634.Google Scholar
Peng, Z.R., Liu, X.F., Zhang, L.Y. and Sun, J. Research progress and prospect of UAV applications in transportation information collection, J. Traf. Transport. Eng., 2012, 12, (06), pp 119126.Google Scholar
Zhang, Z.Y., Cao, Y.F. and Fan, Y.M. Research progress of vision based aerospace conflicts sensing technologies for small unmanned aerial vehicle in low altitude, Acta Aeronaut. Astronaut. Sin., 2022, 43, (8), p 24. https://doi.org/10.7527/S1000-6893.2021.25645 Google Scholar
Sun, Y., Chang, M. and Bai, J.Q. Trajectory generation and control for quadrotor perching on vertical surface, Acta Aeronaut. Astronaut. Sin., 2022, 43, (9), https://doi.org/10.7527/S1000-6893.2021.25756 Google Scholar
Richard, A.D., Michael, J.B., Phyllis, R.M., John, R.W. and Amy, L.A. Wildlife strikes to civil aircraft in the United States, 1990–2019, No DTFACT-14-X-00007, Washington DC, US, 2021.Google Scholar
Zahran, M. and Abdelwahab, M. Crash analysis of UAV hybrid composite fuselage structure under different impact conditions, Mater. Sci. Forum, 2019, 953, pp 8894.CrossRefGoogle Scholar
Naryal, R. and Dorlikar, P. Crashworthiness of bird inspired fuselage of small UAV, In EMSME 2020: Advances in Mechanical and Materials Technology, pp 305–312, 2020.CrossRefGoogle Scholar
Mcfadyen, A., Martin, T. and Perez, T. Low-level collision risk modelling for unmanned aircraft integration and management. In Proceedings of the 2018 IEEE Aerospace Conference, Institute of Electrical and Electronics Engineers Inc., United States of America, pp 946–955, 2018.CrossRefGoogle Scholar
Lee, S.S. Statistical Mid-Air Collision Risk Assessment, Memorial University of Newfoundland, Canada, pp 88118, 2021.Google Scholar
Kiran, D., Troy, L., Thomas, L. and Kalyan, R.K. UAS Airborne Collision Severity Evaluation-Engine Ingestion. Springfield, Virginia, USA, pp 1857, 2017.Google Scholar
Man, M.H.C., Liu, H., Ng, B.F., and Low, K.H. Preliminary evaluation of thrust loss in commercial aircraft engine due to airborne collision with unmanned aerial vehicles (UAVs), In 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece. September 1-4, 2020, pp 1425–1432.Google Scholar
Lin, D.J., Wang, D., Chen, S.H. and Zang, M. Numerical simulations of impact fracture behavior of an automotive windshield glazing: An intrinsic cohesive approach, Compos. Struct., 2018, 186, pp 7993.CrossRefGoogle Scholar
Gao, W., Wang, R.H., Chen, S.H. and Zang, M. An intrinsic cohesive zone approach for impact failure of windshield laminated glass subjected to a pedestrian headform, Int. J. Imp. Eng., 2019, 126, pp 147159.CrossRefGoogle Scholar
Gerardo, O., Thomas, L., Luis, G., Jaime, E., Russel, J.B., Chandresh, Z., Tom, A., Kalyan, R., Trent, R. and Nimesh, J. UAS Airborne Collision Severity Evaluation-Structural Evaluation. Springfield, Virginia, USA, pp 1118, 2017.Google Scholar
Gerardo, O., Thomas, L., Jaime, E., Russel, J.B., Chandrwsh, Z. and Tom, A. UAS Airborne Collision Severity Evaluation-Quadcopter. Springfield, Virginia, USA, pp 8128, 2017.Google Scholar
Gerardo, O., Thomas, L., Luis, G., Jaime, E., Russel, J.B., Chandress, Z., Tom, A., Kalyan, R.K., Trent, R. and Nimesh, J. UAS Airborne Collision Severity Evaluation-Fixed Wing. Springfield, Virginia, USA, 2017, pp 899.Google Scholar
Alexander, R. Potential Damage Assessment of a Mid-Air Collision with a Small UAV, Melbourne, Monash University, 2013, pp 917.Google Scholar
Qinetiq. Small Remotely Piloted Aircraft Systems (Drones) Mid-Air Collision Study. Kew, London TW9 4DU, pp 9–16, 2016.Google Scholar
Choi, Y., Lee, S.E., Jung, J.W. and Hong, J.W. Collision mechanism of unmanned aerial vehicles onto glass panels, Int. J. Micro Air Veh., 2021, 13, pp 118.Google Scholar
Lu, X.H., Liu, X.C., Li, Y.L., Zhang, Y.C. and Zuo, H.F. Simulations of airborne collisions between drones and an aircraft windshield, Aerosp. Sci. Technol., 2020, 98, (9), 105713.CrossRefGoogle Scholar
Man, M.H.C. and Low, K.H. Damage severity prediction of helicopter windshields caused by a collision with a small unmanned aerial vehicle (sUAV). In AIAA AVIATION 2021 FORUM, August 26, 2021. https://doi.org/10.2514/6.2021-3001 CrossRefGoogle Scholar
Liu, J.J., Liu, X.C. and Guo, J. Comparative study impact of aircraft windshield between small UAV and bird, In 2016 (6th) China International Unmanned Aircraft Systems Conference, Beijing, China, pp 67–72, 2016.Google Scholar
Wu, Z.J. Numerical study on dynamic response and damage of the UAV impact civil aircraft, In Civil Aviation Flight Academy of China, Sichuan, China, 2018.Google Scholar
Guo, Y.Z., Liu, X.C., Guo, J, Wang, Y.F. and Wang, J.Z. Comparative experiment of aircraft windshield glass subjected to micra-UAV and bird body impact, J. Exp. Mech., 2020, 35, (01), pp 167173.Google Scholar
Pothnis, J.R., Perla, Y., Arya, H. and Naik, N.K., High strain rate tensile behavior of aluminum alloy 7075-T651 and IS 2062 mild steel, J. Eng. Mater. Technol., 2011, 133, (2), pp 021026-1–021026-9.CrossRefGoogle Scholar
Long, A.L., Wan, M., Wang, W.P., Wu, X.D., Cui, X.X. and Ma, B.L. Forming methodology and mechanism of a novel sheet metal forming technology-electromagnetic superposed forming, Int. J. Solids Struct., 2018, 151, pp 165180.CrossRefGoogle Scholar
Sahraei, E., Meier, J. and Wierzbicki, T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells, J. Power Sources, 2014, 247, pp 503516.CrossRefGoogle Scholar
Sahraei, E., Hill, R. and Wierzbicki, T. Calibration and finite element simulation of pouch lithiumion batteries for mechanical integrity, J. Power Sour., 2012, 201, pp 307321.CrossRefGoogle Scholar
Yin, Z.N. and Wang, T.J. Investigation of tensile deformation behavior of PC, ABS and PC/ABS blends from low to high strain rates, Appl. Math. Mech., 2012, 33, (4), pp 434443.CrossRefGoogle Scholar
Ravi-chandar, K. and Satapathy, S. Mechanical Properties of G-10 Glass-Epoxy Composite, Institute for Advanced Technology, the University of Texas Austin, U.S., pp 1–10, 2007.CrossRefGoogle Scholar
Lu, X.H., Liu, X.C., Zhang, Y.C., Li, Y.L. and Zuo, H.F. Simulation of airborne collision between a drone and an aircraft nose, Aerosp. Sci. Technol., 2021, 118, p 107078.CrossRefGoogle Scholar
Wang, Z., Zhang, C., Wang, Y.M. and Wang, X. Mechanical behaviours of aeronautical inorganic glass at different Straxin rates, Explos. Shock Wave, 2018, 38, (2), pp 295301.Google Scholar
Zhang, L.H., Zhang, X.Q., Yao, X.H. and Zang, S.G. Constitutive model of transparent aviation polyurethane at high strain rates, Explos. Shock Wave, 2015, 35, (1), pp 5156.Google Scholar