Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T08:09:55.779Z Has data issue: false hasContentIssue false

Design and dynamic analysis of supporting mechanism for large scale space deployable membrane sunshield

Published online by Cambridge University Press:  08 February 2024

B.Y. Chang*
Affiliation:
School of Mechanical Engineering, Tiangong University, Tianjin 300387, China Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
X. Guan
Affiliation:
School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
D. Liang
Affiliation:
School of Mechanical Engineering, Tiangong University, Tianjin 300387, China Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
S.J. Yan
Affiliation:
School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
G.G. Jin
Affiliation:
School of Mechanical Engineering, Tiangong University, Tianjin 300387, China Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
*
Corresponding author: B.Y. Chang; Email: mmts_tjpu@126.com

Abstract

Stray light from the sun is one of the most significant factors affecting image quality for the optical system of a spacecraft. This paper proposes a method to design a deployable supporting mechanism for the sunshield based on origami. Firstly, a new type of space mechanism with single-closed loop was proposed according to thick-panel origami, and its mobility was analysed by using the screw theory. In order to design a deployable structure with high controllability, the tetrahedral constraint was introduced to reduce the degree of freedom (DOF), and a corresponding deployable unit named tetrahedral deployable unit (TDU) was obtained. Secondly, the process to constructing a large space deployable mechanism with infinite number of units was explained based on the characteristics of motion and planar mosaic array, and kinematics analysis and folding ratio of supporting mechanism were conducted. A physical prototype was constructed to demonstrate the mobility and deployment of the supporting mechanism. Finally, based on the Lagrange method, a dynamic model of supporting mechanism was established, and the influence of the torsion spring parameters on the deployment process was analysed.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deng, Z. Design of space deployable and foldable mechanism, Harbin, China, Harbin Institute of Technology Press, 2013.Google Scholar
Tian, D., Gao, H., Jin, L., Liu, R., Ma, X., Fan, X. and Guo, Z. Research status and prospect of modular space deployable and foldable mechanism, Chin. Space Sci. Techn., 2021, 41, (4), pp 1631. doi: 10.16708/j.cnki.1000-758X.2021.0047 Google Scholar
Xu, W. Structural analysis and parameter optimization of fixed hinged scissor deployable bridges under point load, J. Southeast Univ., Nat. Sci. Ed., 2022, 52, (6), pp 10631070. doi: 10.3969/i.issn.1001-0505.2022.06.005 Google Scholar
Tachi, T. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh, Advances in Architectural Geometry 2010. Springer, Vienna, 2010, pp 87–102.CrossRefGoogle Scholar
Tang, Y., Liu, C., Xiao, H., Guo, H., Wang, Z., Xie, C. and Liu, R. Modeling and analysis of Miura elastic creases for deployable membrane, J. Harbin Inst. Technol. (Chin. Ed.), 2023, 55, (1), pp 111. doi: 10.11918/202203107 Google Scholar
Ma, X., Li, T., Ma, J., Wang, Z., Shi, C., Zheng, S., Cui, Q., Li, X., Liu, F., Guo, H., Liu, L., Wang, Z. and LiY. Recent advances in space-deployable structures in China, Engineering-Prc, 2022, 17, (2022), pp 207219. doi: 10.1016/j.eng.2022.04.013 Google Scholar
Yang, H., Feng, J., Liu, Y. and Liu, R. Design and kinematic analysis of a large deployable mechanism of the parabolic cylindrical antenna with multi tape-spring hinges, J. Mech. Eng., 2022, 58, (3), pp 7583. doi: 10.3901/JME.2022.03.075 Google Scholar
Chang, B., Yang, S., Jin, G., Zhang, Z. and Zhu, Y. Motion analysis of spatial deployable mechanism driven in straight line, J. Mech. Eng., 2020, 56, (5), pp 192201. doi: 10.3901/JME.2020.05.192 Google Scholar
Chang, B., Xu, X., Liang, D. and Zhang, H. Geometric design and motion analysis of Miura-Ori mechanism with thick panels, Chin. Space Sci. Techn., 2022, 42, (4), pp 146157. doi: 10.16708/i.cnki.1000-758X.2022.0061 Google Scholar
Yang, M., Ma, J., Li, J., Chen, Y. and Wang, S. Thick-panel origami inspired forceps for minimally invasive surgery, J. Mech. Eng., 2018, 54, (17), pp 3645. doi: 10.3901/JME.2018.17.036 CrossRefGoogle Scholar
Edmondson, B.J., Bowen, L.A., Grames, C.L., Magleby, S.P., Howell, L.L. and Bateman, T.C. Oriceps: Origami-inspired forceps, Smart Materials, Adaptive Structures and Intelligent Systems, 16–18 September 2013, Snowbird, Utah, USA. doi: 10.1115/smasis2013-3299 CrossRefGoogle Scholar
Chen, Y. Review on kinematic metamaterials, J. Mech. Eng., 2020, 56, (19), pp 213. doi: 10.3901/JME.2020.19.002 Google Scholar
Fang, H., Wu, H., Liu, Z., Zhang, W. and Xu, J. Advances in the dynamics of origami structures and origami metamaterials, Chin. J. Mech., 2022, 54, (1), pp 138. doi: 10.6052/0459-1879-21-478 Google Scholar
Watanabe, N. and Kawaguchi, K.W. The method for judging rigid foldability, Origami, 2009, 4, pp 165174. doi: 10.1201/b10653-20 Google Scholar
Tachi, T. Generalization of rigid-foldable quadrilateral mesh origami, J. Int. Assoc. Shell Sp., 2009, 50, (3), pp 173179.Google Scholar
Cai, J., Zhang, Y., Xu, Y., Zhou, Y. and Feng, J. The foldability of cylindrical foldable structures based on rigid origami, J. Mech. Design, 2016, 138, (3), 031401. doi: 10.1115/1.4032194 CrossRefGoogle Scholar
Cai, J., Liu, Y., Ma, R., Feng, J. and Zhou, Y. Non-rigidly foldability analysis of Kresling cylindrical origami, J. Mech. Robot, 2017, 9, (4), 041018. doi: 10.1115/1.4036738 Google Scholar
Dai, J. and Jones, J.R. Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent, Proc. Inst. Mech. Eng., Part C, 2002, 216, (10), pp 959970. doi: 10.1243/095440602760400931 CrossRefGoogle Scholar
Dai, J. and Jones, J.R. Matrix representation of topological changes in metamorphic mechanisms, J. Mech. Design, 2005, 127, pp 837840. doi: 10.1115/1.1866159 CrossRefGoogle Scholar
Hull, T. Project origami: Activities for exploring mathematics, Boca Raton, USA, CRC Press, 2012.CrossRefGoogle Scholar
Wang, K., Chen, Y., Wang-Iverson, P., Lang, R. and Yim, M. Folding a patterned cylinder by rigid origami, Origami, 2011, 5, pp 265276.Google Scholar
Feng, H., Ma, J. and Chen, Y. Rigid folding of generalized waterbomb origami tubes, J. Mech. Eng., 2020, 56, (19), pp 143159. doi: 10.3901/JME.2020.19.143 Google Scholar
Edmondson, B.J., Lang, R.J. and Magleby, S.P. An offset panel technique for thick rigidly foldable origami, American Society of Mechanical Engineers, Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 17–20 August 2014, Buffalo, New York, USA. DETC2014-35606. doi: 10.1090/mbk/095.1/15 CrossRefGoogle Scholar
Tachi, T. Rigid-foldable thick origami, Origami, 2011, 5, pp 253264.CrossRefGoogle Scholar
Wang, C., Zhang, D., Li, J. and You, Z. Kirigami-inspired thick-panel deployable structures, Int. J. Solids Struct., 2022, 251, 111752. doi: 10.1016/j.ijsolstr.2022.111752 CrossRefGoogle Scholar
Chen, Y., Peng, R. and You, Z. Origami of thick panels, Science, 2015, 349, (6246), pp 396400. doi: 10.1126/science.aab2870 CrossRefGoogle ScholarPubMed
Bennett, G.T. A new mechanism, Engineering, 1903, 76, (12), pp 777778.Google Scholar
Bennett, G.T. The skew isogram mechanism, P. Lond. Math. Soc., 1914, 2, (1), pp 151173.CrossRefGoogle Scholar
Myard, F.E. Contribution to the geometry of articulated systems, B. Soc. Math. Fr., 1931, 59, pp 183210.CrossRefGoogle Scholar
Baker, J.E. An analysis of the Bricard linkages, Mech. Mach. Theory, 1980, 15, (4), pp 267286.CrossRefGoogle Scholar
Zhang, X., Li, M., Cui, Q., Chen, X., Ma, J. and Chen, Y. Regularly hexagonal origami pattern inspired deployable structure with single degree of freedom, J. Mech. Eng., 2021, 57, (11), pp 153164. doi: 10.3901/JME.2021.11.153 Google Scholar
Liu, Z., Cao, A. and Lin, Q. Development and outlook of deployable membrane sunshield for spacecrafts, J. Astronaut., 2022, 43, (7), pp 839852. doi: 10.3873/i.issn.1000-1328.2022.07.001 Google Scholar
Wei, J., Lin, Q., Lin, G. and Tan, H. Advances and key scientific problems in deployable sunshield structures, J. Natl. Univ. Def. Technol., China, 2018, 40, (1), pp 5666. doi: 10.11887/i.cn.201801009 Google Scholar
Pereira, C., Urgoiti, E. and Pinto, I. The structure of the GAIA deployable sunshield assembly, The 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, 20–30 March 2012, Noordwijk, The Netherlands.Google Scholar
Simpon, R., Broussely, M., Edwards, G., Robinso, D., Cozzani, A. and Casarosa, G. Thermography during thermal test of the GAIA deployable sunshield assembly qualification model in the ESTEC large space simiulator, The 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, 20–30, March 2012, Noordwijk, The Netherlands.Google Scholar
Cash, W. Deep Shadow Occulter, United State Patent No. US 7, 828, 451 B2.Google Scholar
Webb, D., Hirsch, B., Bach, V., Sauder, J., Bradford, C. and Thomson, M. Starshade mechanical architecture & technology effort, 3rd AIAA Spacecraft Structures Conference, 4–8 January 2016, San Diego, USA. doi: 10.2514/6.2016-2165 CrossRefGoogle Scholar
Sigel, D., Trease, B.P., Thomson, M.W., Webb, D.R., Willis, P. and Lisman, P.D. Application of origami in the starshade spacecraft blanket design, International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences, 17–20 August 2014, New York, USA. doi: 10.1115/detc2014-34315 CrossRefGoogle Scholar
Tong, Z., Li, M., Cui, C., Huo, Z. and Luo, B. Design and analysis of the configuration of deployable membrane sunshield, Chin. Space Sci. Techn., 2020, 4, pp 17. doi: 10.16708/j.cnki.1000-758X.2021.0041 Google Scholar
Greenhouse, M.A. The JMST Science Instrument payload: mission context and status, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, International Society for Optics and Photonics, June 26–July 1 2016, Edinburgh, UK. doi: 10.1117/12.2186352 CrossRefGoogle Scholar
Waldie, D. and Gilman, L. Technology development for large deployable sunshield to achieve cryogenic environment, Space 2004 Conference and Exhibit, 28–30 September 2004, San Diego, USA. doi: 10.2514/6.2004-5987 CrossRefGoogle Scholar
Arenberg, J., Flynn, J., Cohen, A., Lynch, R. and Cooper, J. Status of the JWST sunshield and spacecraft, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, International Society for Optics and Photonics, June 26–July 1 2016, Edinburgh, UK. doi: 10.1117/12.2234481 CrossRefGoogle Scholar
Huang, Z., Zhao, Y. and Zhao, T. Advanced spatial mechanism, Beijing, China, Higher Education Press, 2006.Google Scholar
Xu, Y. and Guan, F. Structure–electronic synthesis design of deployable truss antenna, Aerosp. Sci. Technol., 2013, 26, (1), pp 259267. doi: 10.1016/j.ast.2012.05.004 CrossRefGoogle Scholar
Kamaliya, P.K., Shukla, A., Upadhyay, S.H. and Mallikarachchi, H.M.Y.C. Analyzing wrinkle interaction behaviour with Z-fold crease pattern in thin-film planar membrane reflector, Int. J. Solids Struct., 2022, 254, 111902. doi: 10.1016/j.ijsolstr.2022.111902 CrossRefGoogle Scholar
Abbott, A.C., Buskohl, P.R., Joo, J.J., Reich, G.W. and Vaia, R.A. Characterization of creases in polymers for adaptive origami structures, Smart Materials, Adaptive Structures and Intelligent Systems, 8–10 September 2014, Newport, Rhode Island, USA. doi: 10.1115/smasis2014-7480 Google Scholar
Arya, M. and Pellegrino, S. Deployment mechanics of highly compacted thin membrane structures, Spacecraft Structures Conference, 13–17 January 2014, National Harbor, Maryland. doi: 10.2514/6.2014-1038 CrossRefGoogle Scholar