Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T14:34:51.146Z Has data issue: false hasContentIssue false

Cooperative trajectory shaping guidance law for multiple anti-ship missiles

Published online by Cambridge University Press:  08 May 2023

G. Yang
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China
Y. Fang
Affiliation:
Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, China
W. Ma*
Affiliation:
School of Automation, Northwestern Polytechnical University, Xi’an, China
S. Zhu
Affiliation:
School of Astronautics, Northwestern Polytechnical University, Xi’an, China
W. Fu
Affiliation:
Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, China
*
Corresponding author: W. Fu; Email: wenxingfu@nwpu.edu.cn

Abstract

To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on segmented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time convergence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the proposed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ryoo, C.K., Cho, H.J. and Tahk, M.J. Optimal guidance laws with terminal impact angle constraint. J. Guid. Control Dyn., 2005, 28, (4), pp 724732.CrossRefGoogle Scholar
Lee, C.H., Jeon, I.S. and Lee, J.I. Generalized formulation of weighted optimal guidance laws with impact angle constraint. IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp 13171322.CrossRefGoogle Scholar
Lee, J.I., Jeon, I.S. and Lee, C.H. Command-shaping guidance law based on a Gaussian weighting function. IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp 772777.CrossRefGoogle Scholar
Ryu, M.Y., Lee, C.H. and Tahk, M.J. New trajectory shaping guidance laws for anti-tank guided missile. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., 2015, 229, (7), pp 13601368.CrossRefGoogle Scholar
Zhang, Y., Wang, X. and Wu, H. A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles. Chinese J. Aeronaut., 2015, 28, (5), pp 14381450.CrossRefGoogle Scholar
Qin, Z., Qi, X. and Fu, Y. Terminal guidance based on Bézier curve for climb-and-dive maneuvering trajectory with impact angle constraint. IEEE Access., 2018, 7, pp 29692977.CrossRefGoogle Scholar
Liu, S., Yan, B. and Zhang, T. Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint. Aerosp. Sci. Technol., 2022, 126, p 107651.CrossRefGoogle Scholar
Liu, S., Yan, B. and Zhang, T. Three-dimensional coverage-based cooperative guidance law with overload constraints to intercept a hypersonic vehicle. Aerosp. Sci. Technol., 2022, 130, p 107908.CrossRefGoogle Scholar
Jeon, I.S., Lee, J.I. and Tahk, M.J. Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol., 2006, 14, (2) pp 260266.CrossRefGoogle Scholar
Harl, N. and Balakrishnan, S.N. Impact time and angle guidance with sliding mode control. IEEE Trans. Control Syst. Technol., 2012, 20, (6) pp 14361449.CrossRefGoogle Scholar
Chen, X. and Wang, J. Sliding-mode guidance for simultaneous control of impact time and angle. J. Guid. Control Dyn., 2019, 42, (2), pp 394401.CrossRefGoogle Scholar
Zhang, Y., Wang, X. and Ma, G. Impact time control guidance law with large impact angle constraint. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., 2015, 229, (11), pp 21192131.CrossRefGoogle Scholar
Kim, T.H., Park, B.G. and Tahk, M.J. Bias-shaping method for biased proportional navigation with terminal-angle constraint. J. Guid. Control Dyn., 2013, 36, (6), pp 18101816.CrossRefGoogle Scholar
Whang, I.H. and Ra, W.S. Time-to-go estimation filter for anti-ship missile application. In 2008 SICE Annual Conference: IEEE, Chofu, Japan, 2008, pp 247250.Google Scholar
Kim, T.H., Park, B.G. and Tahk, M.J. Time-to-go estimation using guidance command history. IFAC Proc. Vol., 2011, 44, (1), pp 55315536.Google Scholar
Liu, S., Yan, B. and Zhang, T. Guidance law with desired impact time and FOV constrained for antiship missiles based on equivalent sliding mode control. Int. J. Aerosp. Eng., 2021, 2021, p 15.CrossRefGoogle Scholar
Chen, X. and Wang, J. Optimal control based guidance law to control both impact time and impact angle. Aerosp. Sci. Technol., 2019, 84, pp 454463.CrossRefGoogle Scholar
Liu, J. and Yang, J. An event-triggered optimal cooperative guidance law for simultaneous attacks with impact angle constraints. Aerosp. Sci. Technol., 2022, 43, (5), pp 13431357.Google Scholar
Erer, K.S. and Tekin, R. Impact time and angle control based on constrained optimal solutions. J. Guid. Control Dyn., 2016, 39, (10), pp 2445U2451.CrossRefGoogle Scholar
Liu, S., Yan, B. and Huang, W. Current status and prospects of terminal guidance laws for intercepting hypersonic vehicles in near space: a review. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.), 2023. doi: 10.1631/jzus.A2200423 Google Scholar
An, K., Guo, Z. and Huang, W. A cooperative guidance approach based on the finite-time control theory for hypersonic vehicles. Int. J. Aeronaut. Space Sci., 2022, 23, pp 169179.CrossRefGoogle Scholar
Zhang, S., Guo, Y. and Liu, Z. Finite-time cooperative guidance strategy for impact angle and time control. IEEE Trans. Aerosp. Electron. Syst., 2021, 57, (2), pp 806819.CrossRefGoogle Scholar
Liu, S., Wang, Y. and Li, Y. Cooperative guidance for active defence based on line-of-sight constraint under a low-speed ratio. Aeronaut. J., 2022, 2022, pp 119.Google Scholar
Sinha, A. and Kumar, B. Supertwisting control-based cooperative salvo guidance using leader–follower approach. IEEE Trans. Aerosp. Electron. Syst., 2020, 56, (5), pp 35563565.CrossRefGoogle Scholar
Liu, S., Yan, B. and Zhang, T. Three-dimensional cooperative guidance law for intercepting hypersonic targets. Aerosp. Sci. Technol., 2022, 129, p 107815.CrossRefGoogle Scholar
Li, B., Lin, D. and Wang, H. Finite time convergence cooperative guidance law based on graph theory. Optik, 2016, 127, (21), pp 1018010188.CrossRefGoogle Scholar
Liu, S., Yan, B. and Liu, R. Cooperative guidance law for intercepting a hypersonic target with impact angle constraint. Aeronaut. J., 2022, 126, (1300), pp 10261044.CrossRefGoogle Scholar
Kumar, S.R. and Mukherjee, D. Cooperative salvo guidance using finite-time consensus over directed cycles, IEEE Trans. Aerosp. Electron. Syst., 2020, 56, (2), pp 15041514.CrossRefGoogle Scholar
Song, J., Song, S. and Xu, S. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence. Aerosp. Sci. Technol., 2017, 67, pp 193205.CrossRefGoogle Scholar
Shin, H.S., Tsourdos, A. and Li, K.B. A new three-dimensional sliding mode guidance law variation with finite time convergence, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (5), pp 193205.CrossRefGoogle Scholar
Jeon, I.S., Lee, J.I. and Tahk, M.J. Homing guidance law for cooperative attack of multiple missiles. J. Guid. Control Dyn., 2010, 33, (1), pp 275280.CrossRefGoogle Scholar
Yang, G., Fang, Y. and Fu, W. Cooperative trajectory shaping guidance law for multiple missiles. In 2022 International Conference on Guidance, Navigation and Control (ICGNC): IEEE, Harbin, China, 2022, pp 47244735.CrossRefGoogle Scholar
Yu, S. and Yu, X. and Shirinzadeh, B. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41, (11), pp 19571964.CrossRefGoogle Scholar
Huang, X., Lin, W. and Yang, B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica, 2005, 41, (5), pp 881888.CrossRefGoogle Scholar
Wang, Y., Song, Y. and Hill, D.J. Prescribed-time consensus and containment control of networked multiagent systems. IEEE T. Cybern., 2018, 49, (4), pp 11381147.CrossRefGoogle ScholarPubMed
Cheng, L., Hou, Z. and Tan, M. Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises. IEEE Trans. Autom. Control., 2011, 56, (8), pp 19581963.CrossRefGoogle Scholar