Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T08:31:59.387Z Has data issue: false hasContentIssue false

Audio degradation of climax mode transmission in air traffic control

Published online by Cambridge University Press:  30 May 2024

H. Vignoli Muniz*
Affiliation:
Department of Electrical Engineering, Federal University of Parana, Curitiba, PR, Brazil
E. Parente Ribeiro
Affiliation:
Department of Electrical Engineering, Federal University of Parana, Curitiba, PR, Brazil
*
Corresponding author: H. Vignoli Muniz; Email: hildovig@hotmail.com

Abstract

Airspace control plays an important role in the safety and fluidity of air traffic. A fundamental service for this purpose is audio communication through frequencies in the VHF bands. This paper describes the evaluation of the audio degradation of voice transmissions from control centre to the aircraft. The effects of more than one station broadcasting on the same frequency with carrier offset (climax mode) are analysed using perceptual evaluation of speech quality (PESQ) perceptual model. Comparative studies are performed to verify the degree of degradation of different audio transport systems and climax situation.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badinelli, M., Cushman, A. and Randazzo, P. Feasibility of using offset carrier systemson very high frequency air/ground voice channels, Tech. Rep. TN89/71, Federal Aviation Administration, 1990.Google Scholar
Storm, A. Speech Quality Investigation Using PESQ in a Simulated Climax System for ATM. PhD thesis, Luleå University of Technology, Sweden, 2007.Google Scholar
Frigotto, R.L. and Pohl, A.d.A.P. Análise da Qualidade de Audio no Serviço Móvel Aeronáutico, in XXXVI SBRT, 2018.Google Scholar
Signore, T.L. and Girard, M. Aeronautical Telecommunication Network (ATN), Proceedings - IEEE Military Communications Conference MILCOM, vol. 1, no. 2, 1998, pp 4044.Google Scholar
Dhas, C., Mulkerin, T., Wargo, C., Nielsen, R. and Gaugha, T. Aeronautical Related Applications Using ATN and TCP/IP, Research Report NASA/CR-2000-209922, NASA, 2000.Google Scholar
Mahmoud, M.S.B., Pirovano, A. and Larrieu, N. Aeronautical communication transition from analog to digital data: A network security survey, Comput. Sci. Rev., 2014, 11–12, pp 129.Google Scholar
Fonseca, R., Coimbra, E. and Alves, L. ATN-Br, uma evolução da rede de comunicações operacionais do SISCEAB, Revista CISCEA News, 2018, 3, (1).Google Scholar
Sernagiotto, M.A., Rosset, V. and Nascimento, C.V.M. Seleção de Redes Heterogêneas no Contexto da ATN-Br, in XX Simpósio de Aplicações Operacionais Em Áreas de Defesa (XX SIGE), no. October in 1, 2018, pp 7378.Google Scholar
Jansen, A.E., Belchior, M.A.V. and Ananias Filho, L. Entendendo a ATN-Br – Nova geração de Rede de Tráfego Aéreo Brasil, Frequentis, 2017.Google Scholar
Belchior, M. and Galler, S.J. NextGen ATN-Brazil – First deployed SDN in ATM, Frequentis, 2017.Google Scholar
ITU-T, Rec. P.800 - Methods for Subjective Determination of Transmission Quality, Telecommunications Standardization Sector, 1996.Google Scholar
ITU-T, Rec. P.862 - Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs, Telecommunications Standardization Sector, 2001.Google Scholar
Mrvova, M. and Pocta, P. Quality estimation of synthesized speech transmitted over IP channel using genetic programming approach” in The International Conference on Digital Technologies 2013, (Zilina), IEEE, 2013, pp 3943.Google Scholar
Pŏta, P. and Holub, J. Predicting the Quality of Synthesized and Natural Speech Impaired by Packet Loss and Coding Using PESQ and P.563 Models, Acta Acustica united with Acustica, vol. 97, Sept. 2011, pp 852–868.Google Scholar