Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T06:33:26.199Z Has data issue: false hasContentIssue false

Assessment of global and local neural network’s performance for model-free estimation of flow angles

Published online by Cambridge University Press:  07 July 2023

A. Lerro*
Affiliation:
Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, C.so Duca degli Abruzzi 24 Turin, Italy, 10129
L. de Pasquale
Affiliation:
Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, C.so Duca degli Abruzzi 24 Turin, Italy, 10129
*
Corresponding author: A. Lerro; Email: angelo.lerro@polito.it

Abstract

A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pouliezos, A.D. and Stavrakakis, G.S. Analytical Redundancy Methods, vol. 12, Springer Netherlands, 1994.CrossRefGoogle Scholar
Gertler, J. Analytical redundancy methods in fault detection and isolation – survey and synthesis, IFAC Proc. Vol., 1991, 24, (6), pp 921. IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS’91), 10–13 September 1991, Baden-Baden, Germany.CrossRefGoogle Scholar
Taiebat, M. and Sassani, F. Distinguishing sensor faults from system faults by utilizing minimum sensor redundancy, Trans. Can. Soc. Mech. Eng., 2017, 41, (3), pp 469487.CrossRefGoogle Scholar
Eubank, R., Atkins, E. and Ogura, S. Fault detection and fail-safe operation with a multiple-redundancy air-data system, AIAA Guidance, Navigation, and Control Conference, number August 2010, Reston, Virigina, pp 114. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Lu, P., Van Eykeren, L., Van Kampen, E.-J. and Chu, Q. Air data sensor fault detection and diagnosis with application to real flight data. AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum (AIAA 2015-1311), January 2015, pp 118.10.2514/6.2015-1311CrossRefGoogle Scholar
Komite Nasional Keselamatan Transportasi Republic of Indonesia. Aircraft accident investigation report - pt. lion mentari airlines boeing 737-8 (max), 2018. KNKT.18.10.35.04.Google Scholar
Dendy, J.B. and Transier, K.G. Angle-of-Attack Computation Study, Technical report, Air Force Flight Dynamics Laboratory, 1969. AFFDL-TR-69-93.Google Scholar
Freeman, D.B. Angle of Attack Computation System, Technical report, Air Force Flight Dynamics Laboratory, 1973. AFFDL-TR-73-89.Google Scholar
Rohloff, T.J., Whitmore, S.A. and Catton, I. Air data sensing from surface pressure measurements using a neural network method, AIAA J., 1998, 36, (11), pp 20942101.CrossRefGoogle Scholar
Samara, P.A., Fouskitakis, G.N., Sakellariou, J.S. and Fassois, S.D. Aircraft angle-of-attack virtual sensor design via a functional pooling NARX methodology. 2003 European Control Conference (ECC), September 2003, vol. 1, pp 1816–1821. IEEE.CrossRefGoogle Scholar
Wise, K.A. Computational Air Data System for Angle-Of-Attack and Angle-Of-Sideslip, 2005. US 6,928,341 B2.Google Scholar
Crowther, W.J. and Lamont, P.J. A neural network approach to the calibration of a flush air data system, Aeronaut. J. (1968), 2001, 105, (1044), pp 8595.CrossRefGoogle Scholar
Yeung, A., Bramesfeld, G., Chung, J. and Foster, S. Measuring low-altitude wind gusts using the unmanned aerial vehicle Gustav, J. Unmanned Veh. Syst., 2018, 6, (4), pp 235248.10.1139/juvs-2017-0029CrossRefGoogle Scholar
Lu, P., Van Eykeren, L., van Kampen, E., de Visser, C.C. and Chu, Q.P. Adaptive three-step kalman filter for air data sensor fault detection and diagnosis, J. Guid. Control Dyn., 2016, 39, (3), pp 590604.CrossRefGoogle Scholar
Prem, S., Sankaralingam, L. and Ramprasadh, C. Pseudomeasurement-aided estimation of angle of attack in mini unmanned aerial vehicle, J. Aerosp. Inform. Syst., 2020, 17, (11), pp 603614.Google Scholar
Valasek, J., Harris, J., Pruchnicki, S., McCrink, M., Gregory, J. and Sizoo, D.G. Derived angle of attack and sideslip angle characterization for general aviation, J. Guid. Control Dyn., 2020, 43, (6), pp 10391055.10.2514/1.G004010CrossRefGoogle Scholar
Lerro, A., Brandl, A. and Gili, P. Model-free scheme for angle-of-attack and angle-of-sideslip estimation. J. Guid. Control Dyn., 2021, 44, (3), pp 595600.CrossRefGoogle Scholar
Lerro, A., Brandl, A. and Gili, P. Neural network techniques to solve a model-free scheme for flow angle estimation, 2021 International Conference on Unmanned Aircraft Systems (ICUAS), 2021, pp 1187–1193.CrossRefGoogle Scholar
Plataniotis, K.N. and Venetsanopoulos, A.N. Nonlinear filtering of non-Gaussian noise, J. Intell. Rob. Syst., 1997, 19, (1), pp 207231.CrossRefGoogle Scholar
Grigorie, L.T. and Botez, R.M. Modeling and numerical simulation of an algorithm for the inertial sensors errors reduction and for the increase of the strap-down navigator redundancy degree in a low cost architecture, Trans. Can. Soc. Mech. Eng., 2010, 34, (1), pp 116.10.1139/tcsme-2010-0001CrossRefGoogle Scholar
Lerro, A., Gili, P. and Pisani, M. Verification in relevant environment of a physics-based synthetic sensor for flow angle estimation, Electronics, 2022, 11, (1). https://www.mdpi.com/2079-9292/11/1/165 CrossRefGoogle Scholar
Schmidt, D.K. Modern Flight Dynamics. Asia Higher Education Engineer. McGraw-Hill, 2011.Google Scholar
Etkin, B. and Reid, L.D. Dynamics of Flight: Stability and Control, 3rd Edition, Wiley, 1995.Google Scholar
Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indus. Appl. Math., 1963, 11, (2), pp 431441.CrossRefGoogle Scholar
Lerro, A. Physics-based modelling for a closed form solution for flow angle estimation, Adv. Aircr. Spacecr. Sci., December 2021, 8, (4), pp 273287.Google Scholar
Cybenko, G. Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., December 1989, 2, (4), pp 303314.CrossRefGoogle Scholar
Park, J. and Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput., 1991, 3, (2), pp 246257.CrossRefGoogle ScholarPubMed
Maruyama, M., Girosi, F. and Poggio, T. Connection between GRBF and MLP, Artif. Intell. Memo, April 1992, 1, (1291).Google Scholar
Haykin, S. Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, 1994.Google Scholar
Lerro, A. and Brandl, A. Simulated data for ASSE verification: noise-free and noisy data, February 2022.Google Scholar
SAE International. Minimum performance standards, for angle of attack (AoA) and angle of sideslip (AoS), 2019.Google Scholar
Beale, M.H., Hagan, M.T. and Demuth, H.B. Deep Learning Toolbox, The MathWorks, 2021.Google Scholar
Fabri, S.G. and Kadirkamanathan, V. Dynamic structure neural networks for stable adaptive control of nonlinear systems. IEEE Trans. Neural Netw., 1996, 7, (5), pp 11511167.CrossRefGoogle ScholarPubMed
Platt, J. A resource-allocating network for function interpolation, Neural Comput., 1991, 3, (2), pp 213225.CrossRefGoogle Scholar
Yingwei, L., Sundararajan, N. and Saratchandran, P. Identification of time-varying nonlinear systems using minimal radial basis function neural networks, IEE Proc., Control Theory Appl., March 1997, 144, (6), pp 202208.CrossRefGoogle Scholar