Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-x8cck Total loading time: 0.191 Render date: 2022-11-27T03:38:09.829Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Rapid gust response simulation of large civil aircraft using computational fluid dynamics

Published online by Cambridge University Press:  21 September 2017

P. Bekemeyer*
Affiliation:
School of Engineering, University of Liverpool, United Kingdom
R. Thormann
Affiliation:
School of Engineering, University of Liverpool, United Kingdom
S. Timme
Affiliation:
School of Engineering, University of Liverpool, United Kingdom

Abstract

Several critical load cases during the aircraft design process result from atmospheric turbulence. Thus, rapidly performable and highly accurate dynamic response simulations are required to analyse a wide range of parameters. A method is proposed to predict dynamic loads on an elastically trimmed, large civil aircraft using computational fluid dynamics in conjunction with model reduction. A small-sized modal basis is computed by sampling the aerodynamic response at discrete frequencies and applying proper orthogonal decomposition. The linear operator of the Reynolds-averaged Navier-Stokes equations plus turbulence model is then projected onto the subspace spanned by this basis. The resulting reduced system is solved at an arbitrary number of frequencies to analyse responses to 1-cos gusts very efficiently. Lift coefficient and surface pressure distribution are compared with full-order, non-linear, unsteady time-marching simulations to verify the method. Overall, the reduced-order model predicts highly accurate global coefficients and surface loads at a fraction of the computational cost, which is an important step towards the aircraft loads process relying on computational fluid dynamics.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper first appeared at the RAeS Applied Aerodynamics Conference, 19-21 July 2016, Bristol, UK.

References

REFERENCES

1. Albano, E. and Rodden, W.P. A doublet lattice method for calculating lift distribution on oscillating surfaces in subsonic flow, AIAA J, 1969, 2, (7), pp 279-285.Google Scholar
2. Giesing, J.P., Rodden, W.P. and Stahl, B. Sears function and lifting surface theory for harmonic gust fields, J Aircr, 1970, 7, pp 252-255.CrossRefGoogle Scholar
3. Kier, T. Comparison of unsteady aerodynamic modelling methodologies with respect to flight loads analysis, AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2005, AIAA 2005-6027, San Francisco, CA, US.Google Scholar
4. Dimitrov, D. and Thormann, R. DLM-correction methods for aerodynamic gust response prediction, International Forum on Aeroelasticity and Structural Dynamics (IFASD), 2013, IFASD 2013-24C, Bristol, England.Google Scholar
5. Raveh, D.E. CFD-based models of aerodynamic gust response, J Aircr, 2007, 44, (3), pp 888-897.CrossRefGoogle Scholar
6. Reimer, L., Ritter, M., Heinrich, R. and Krüger, W. CFD-based gust load analysis for a free-flying flexible passenger aircraft in comparison to a DLM-based approach, 22nd AIAA Computational Fluid Dynamics Conference, 2015, AIAA 2015-2455, Dallas, TX, US.Google Scholar
7. Clark, W.S. and Hall, K.C. A time-linearized analysis of stall flutter, J Turbomachinery, 2000, 122, (3), pp 467-476.CrossRefGoogle Scholar
8. Weishäupl, C. and Laschka, B. Small disturbance euler simulations for delta wing unsteady flows due to harmonic oscillations, J Aircr, 2004, 41, (4), pp 782-789.CrossRefGoogle Scholar
9. Thormann, R. and Widhalm, M. Linear-frequency-domain predictions of dynamic-response data for viscous transonic flows, AIAA J, 2013, 51, (11), pp 2540-2557.CrossRefGoogle Scholar
10. Bekemeyer, P., Thormann, R. and Timme, S. Frequency-domain gust response simulation using computational fluid dynamics, AIAA J, 2017, 55, (7), pp 2174-2185.CrossRefGoogle Scholar
11. Lucia, D.J., Beran, P.S. and Silva, W.A. Reduced-order modeling: New approaches for computational physics, Progress in Aerospace Sciences, 2004, 40, (1-2), pp 51-117.CrossRefGoogle Scholar
12. Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. and Ukeiley, L.S. Model analysis of fluid flows: An overview, AIAA J, 2017, accepted for publication.Google Scholar
13. Lumley, J.L. The structures of inhomogeneous turbulent flow, Atmospheric Turbulence and Radio Wave Propagation, 1967, pp 166-178.Google Scholar
14. Kim, T. Frequency-domain Karhunen-Loève method and its application to linear dynamic systems, AIAA J, 1998, 36, (11), pp 2117-2123.CrossRefGoogle Scholar
15. Hall, K.C., Thomas, J.P. and Dowell, E.H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows, AIAA J, 2000, 38, (10), pp 1853-1862.CrossRefGoogle Scholar
16. Bekemeyer, P. and Timme, S. Reduced order gust response simulation using computational fluid dynamics, 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016, AIAA 2016-1485, San Diego, CA, US.Google Scholar
17. Thormann, R., Bekemeyer, P. and Timme, S. Reduced order modelling of gust analysis using computational fluid dynamics, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2016, ECCOMAS 2016–5441, Crete, Greece.Google Scholar
18. Bekemeyer, P. and Timme, S. Reduced order transonic aeroelastic gust response simulation of large aircraft, 35th AIAA Applied Aerodynamics Conference, 2017, AIAA Paper 2017-4361, Denver, CO.Google Scholar
19. Rodden, W.P. Theoretical and Computational Aeroelasticity, 1st ed., 2011, Crest Publishing.Google Scholar
20. Bekemeyer, P., Thormann, R. and Timme, S. Linearised frequency domain gust response analysis of large civil aircraft, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2016, ECCOMAS 2016-5316, Crete, Greece.Google Scholar
21. Holmes, P., Lumley, J.L., Berkooz, G. and Rowley, C.W. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd ed., 2012, Cambridge Univ. Press.CrossRefGoogle Scholar
22. Berkooz, G., Holmes, P. and Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mech, 1993, 25, pp 539-575.CrossRefGoogle Scholar
23. Sirovich, L. Turbulence and the dynamics of coherent structures, Parts I-III, Quarterly of Applied Mathematics, 1987, XLV, pp 561-590.CrossRefGoogle Scholar
24. Schwamborn, D., Gerhold, T. and Heinrich, R. The DLR TAU-code: Recent applications in research and industry, European Conference on Computational Fluid Dynamics, 2006, ECCOMAS CFD, Egmond aan Zee, The Netherlands.Google Scholar
25. Spalart, P.R. and Allmaras, S.R. A one-equation turbulence model for aerodynamic flows, Recherche Aerospatiale, 1994, 1, pp 5-21.Google Scholar
26. Parameswaran, V. and Baeder, J.D. Indicial aerodynamics in compressible flow-direct computational fluid dynamic calculations, J Aircr, 1997, 34, (1), pp 131-133.CrossRefGoogle Scholar
27. Jameson, A., Schmidt, W. and Turkel, E. Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, 14th Fluid and Plasma Dynamic Conference, 1981, AIAA Paper 1981-1259, Palo Alto, CA, US.Google Scholar
28. Dwight, R. An implicit LU-SGS scheme for finite-volume discretizations of the Navier-Stokes equations on hybrid grids, DLR-FB-2005-05, 2006, Braunschweig, Germany.Google Scholar
29. Xu, S., Timme, S. and Badcock, K.J. Enabling off-design linearised aerodynamics analysis using Krylov subspace recycling technique, Comput. Fluids, 2016, 140, pp 385-396.CrossRefGoogle Scholar
30. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed., 2003, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, US.CrossRefGoogle Scholar
31. Broyden, C.G. A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation (American Mathematical Society), 1965, 19, pp 577-593.CrossRefGoogle Scholar
32. European Aviation Regulations. Certification Specifications for Large Aeroplanes (CS-25), European Aviation Safety Agency (EASA), 2015, pp 63-65.Google Scholar
33. Pagliuca, G., Bekemeyer, P., Thormann, R. and Timme, S. Model reduction for gust load analysis of free-flying aircraft, International Forum on Aeroelasticity and Structural Dynamics (IFASD), 2017, IFASD-2017-148, Como, Italy.Google Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rapid gust response simulation of large civil aircraft using computational fluid dynamics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Rapid gust response simulation of large civil aircraft using computational fluid dynamics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Rapid gust response simulation of large civil aircraft using computational fluid dynamics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *