We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over the past forty years many papers have studied logarithmic sheaves associated to reduced divisors, in particular logarithmic bundles associated to plane curves. An interesting family of these curves are the so-called free ones for which the associated logarithmic sheaf is the direct sum of two line bundles. Terao conjectured thirty years ago that when a curve is a finite set of distinct lines (i.e. a line arrangement) its freeness depends solely on its combinatorics, but this has only been proved for sets of up to 12 lines. In looking for a counter-example to Terao’s conjecture, the nearly free curves introduced by Dimca and Sticlaru arise naturally. We prove here that the logarithmic bundle associated to a nearly free curve possesses a minimal non-zero section that vanishes on one single point, P say, called the jumping point, and that this characterises the bundle. We then give a precise description of the behaviour of P. Based on detailed examples we then show that the position of P relative to its corresponding nearly free arrangement of lines may or may not be a combinatorial invariant, depending on the chosen combinatorics.
We study the singularity at the origin of $\mathbb{C}^{n+1}$ of an arbitrary homogeneous polynomial in $n+1$ variables with complex coefficients, by investigating the monodromy characteristic polynomials $\unicode[STIX]{x1D6E5}_{l}(t)$ as well as the relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case $n=2$, we give a description of $\unicode[STIX]{x1D6E5}_{C}(t)=\unicode[STIX]{x1D6E5}_{1}(t)$ in terms of the multiplier ideal.
Let $V$ be a hypersurface with an isolated singularity at the origin defined by the holomorphic function $f:(\mathbb{C}^{n},0)\rightarrow (\mathbb{C},0)$. The Yau algebra $L(V)$ is defined to be the Lie algebra of derivations of the moduli algebra $A(V):={\mathcal{O}}_{n}/(f,\unicode[STIX]{x2202}f/\unicode[STIX]{x2202}x_{1},\ldots ,\unicode[STIX]{x2202}f/\unicode[STIX]{x2202}x_{n})$, that is, $L(V)=\text{Der}(A(V),A(V))$. It is known that $L(V)$ is finite dimensional and its dimension $\unicode[STIX]{x1D706}(V)$ is called the Yau number. We introduce a new series of Lie algebras, that is, $k$th Yau algebras $L^{k}(V)$, $k\geq 0$, which are a generalization of the Yau algebra. The algebra $L^{k}(V)$ is defined to be the Lie algebra of derivations of the $k$th moduli algebra $A^{k}(V):={\mathcal{O}}_{n}/(f,m^{k}J(f)),k\geq 0$, that is, $L^{k}(V)=\text{Der}(A^{k}(V),A^{k}(V))$, where $m$ is the maximal ideal of ${\mathcal{O}}_{n}$. The $k$th Yau number is the dimension of $L^{k}(V)$, which we denote by $\unicode[STIX]{x1D706}^{k}(V)$. In particular, $L^{0}(V)$ is exactly the Yau algebra, that is, $L^{0}(V)=L(V),\unicode[STIX]{x1D706}^{0}(V)=\unicode[STIX]{x1D706}(V)$. These numbers $\unicode[STIX]{x1D706}^{k}(V)$ are new numerical analytic invariants of singularities. In this paper we formulate a conjecture that $\unicode[STIX]{x1D706}^{(k+1)}(V)>\unicode[STIX]{x1D706}^{k}(V),k\geq 0.$ We prove this conjecture for a large class of singularities.
We study the dynamics of a singular holomorphic vector field at $(\mathbb{C}^{2},0)$. Using the associated flow and its pullback to the blow-up manifold, we provide invariants relating the vector field, a non-invariant analytic branch of curve, and the deformation of this branch by the flow. This leads us to study the conjugacy classes of singular branches under the action of holomorphic flows. In particular, we show that there exists an analytic class that is not complete, meaning that there are two elements of the class that are not analytically conjugated by a local biholomorphism embedded in a one-parameter flow. Our techniques are new and offer an approach dual to the one used classically to study singularities of holomorphic vector fields.
Soient $S$ un schéma nœthérien et $f:X\rightarrow S$ un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible $\mathscr{F}$ de $\mathbb{Z}/n\mathbb{Z}$-modules sur $X$, les faisceaux de $\mathbb{Z}/n\mathbb{Z}$-modules $\mathtt{R}^{i}f_{\star }\mathscr{F}$, obtenus par image directe (pour la topologie étale), sont également constructibles : il existe une stratification $\mathfrak{S}$ de $S$ telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particulier où $S$ est génériquement de caractéristique nulle ou bien les faisceaux $\mathscr{F}$ sont constants (de torsion inversible sur $S$), on étudie ici la dépendance de $\mathfrak{S}$ en $\mathscr{F}$. On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les foncteurs $\mathtt{R}^{i}f_{\star }$. Si $f$ n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à $S$. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres des faisceaux $\mathtt{R}^{i}f_{\star }\mathbb{F}_{\ell }$, où $\ell$ parcourt les nombres premiers inversibles sur $S$.
We give a bound on the H-constants of configurations of smooth curves having transversal intersection points only on an algebraic surface of non-negative Kodaira dimension. We also study in detail configurations of lines on smooth complete intersections $X \subset \mathbb{P}_{\mathbb{C}}^{n + 2}$ of multi-degree d = (d1, …, dn), and we provide a sharp and uniform bound on their H-constants, which only depends on d.
For a line arrangement ${\mathcal{A}}$ in the complex projective plane $\mathbb{P}^{2}$, we investigate the compactification $\overline{F}$ in $\mathbb{P}^{3}$ of the affine Milnor fiber $F$ and its minimal resolution $\tilde{F}$. We compute the Chern numbers of $\tilde{F}$ in terms of the combinatorics of the line arrangement ${\mathcal{A}}$. As applications of the computation of the Chern numbers, we show that the minimal resolution is never a quotient of a ball; in addition, we also prove that $\tilde{F}$ is of general type when the arrangement has only nodes or triple points as singularities. Finally, we compute all the Hodge numbers of some $\tilde{F}$ by using some knowledge about the Milnor fiber monodromy of the arrangement.
Let $f$ be a quasi-homogeneous polynomial with an isolated singularity in $\mathbf{C}^{n}$. We compute the length of the ${\mathcal{D}}$-modules ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ generated by complex powers of $f$ in terms of the Hodge filtration on the top cohomology of the Milnor fiber. When $\unicode[STIX]{x1D706}=-1$ we obtain one more than the reduced genus of the singularity ($\dim H^{n-2}(Z,{\mathcal{O}}_{Z})$ for $Z$ the exceptional fiber of a resolution of singularities). We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the quotient ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ is nonzero when $\unicode[STIX]{x1D706}$ is a root of the $b$-function of $f$ (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these ${\mathcal{D}}$-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
We prove two main results on Denjoy–Carleman classes: (1) a composite function theorem which asserts that a function $f(x)$ in a quasianalytic Denjoy–Carleman class ${\mathcal{Q}}_{M}$, which is formally composite with a generically submersive mapping $y=\unicode[STIX]{x1D711}(x)$ of class ${\mathcal{Q}}_{M}$, at a single given point in the source (or in the target) of $\unicode[STIX]{x1D711}$ can be written locally as $f=g\circ \unicode[STIX]{x1D711}$, where $g(y)$ belongs to a shifted Denjoy–Carleman class ${\mathcal{Q}}_{M^{(p)}}$; (2) a statement on a similar loss of regularity for functions definable in the $o$-minimal structure given by expansion of the real field by restricted functions of quasianalytic class ${\mathcal{Q}}_{M}$. Both results depend on an estimate for the regularity of a ${\mathcal{C}}^{\infty }$ solution $g$ of the equation $f=g\circ \unicode[STIX]{x1D711}$, with $f$ and $\unicode[STIX]{x1D711}$ as above. The composite function result depends also on a quasianalytic continuation theorem, which shows that the formal assumption at a given point in (1) propagates to a formal composition condition at every point in a neighbourhood.
This article is the first in a series of two in which we study the vanishing cycles of curves in toric surfaces. We give a list of possible obstructions to contract vanishing cycles within a given complete linear system. Using tropical means, we show that any non-separating simple closed curve is a vanishing cycle whenever none of the listed obstructions appears.
We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
Given an $n$-dimensional variety $Z$ with rational singularities, we conjecture that if $f:Y\rightarrow Z$ is a resolution of singularities whose reduced exceptional divisor $E$ has simple normal crossings, then
We prove this when $Z$ has isolated singularities and when it is a toric variety. We deduce that for a divisor $D$ with isolated rational singularities on a smooth complex $n$-dimensional variety $X$, the generation level of Saito’s Hodge filtration on the localization $\mathscr{O}_{X}(\ast D)$ is at most $n-3$.
Let $V$ be a hypersurface with an isolated singularity at the origin defined by the holomorphic function $f:(\mathbb{C}^{n},0)\rightarrow (\mathbb{C},0)$. The Yau algebra, $L(V)$, is the Lie algebra of derivations of the moduli algebra of $V$. It is a finite-dimensional solvable algebra and its dimension $\unicode[STIX]{x1D706}(V)$ is the Yau number. Fewnomial singularities are those which can be defined by an $n$-nomial in $n$ indeterminates. Yau and Zuo [‘A sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity’, Pure Appl. Math. Q.12(1) (2016), 165–181] conjectured a bound for the Yau number and proved that this conjecture holds for binomial isolated hypersurface singularities. In this paper, we verify this conjecture for weighted homogeneous fewnomial surface singularities.
We define and study twisted Alexander-type invariants of complex hypersurface complements. We investigate torsion properties for the twisted Alexander modules and extend the local-to-global divisibility results of Maxim and of Dimca and Libgober to the twisted setting. In the process, we also study the splitting fields containing the roots of the corresponding twisted Alexander polynomials.
We compute the Alexander polynomial of a nonreduced nonirreducible complex projective plane curve with mutually coprime orders of vanishing along its irreducible components in terms of certain multiplier ideals.
This paper proves the existence of potentials of the first and second kind of a Frobenius like structure in a frame, which encompasses families of arrangements. The frame uses the notion of matroids. For the proof of the existence of the potentials, a power series ansatz is made. The proof that it works requires that certain decompositions of tuples of coordinate vector fields are related by certain elementary transformations. This is shown with a nontrivial result on matroid partition.
Using recent results by Măcinic, Papadima and Popescu, and a refinement of an older construction of ours, we determine the monodromy action on $H^{1}(F(G),\mathbb{C})$, where $F(G)$ denotes the Milnor fiber of a hyperplane arrangement associated to an irreducible complex reflection group $G$.
We prove some vanishing theorems for the cohomology groups of local systems associated to Laurent polynomials. In particular, we extend one of the results of Gelfand et al. [Generalized Euler integrals and$A$-hypergeometric functions, Adv. Math. 84 (1990), 255–271] to various directions. In the course of the proof, some properties of vanishing cycles of perverse sheaves and twisted Morse theory are used.
The detection of the bifurcation set of polynomial mapping ℝn → ℝp, n ⩾ p, in more than two variables remains an unsolved problem. In this note we provide a solution for n = p + 1 ⩾ 3.
We introduce the notion of regularity for a relative holonomic ${\mathcal{D}}$-module in the sense of Monteiro Fernandes and Sabbah [Internat. Math. Res. Not. (21) (2013), 4961–4984]. We prove that the solution functor from the bounded derived category of regular relative holonomic modules to that of relative constructible complexes is essentially surjective by constructing a right quasi-inverse functor. When restricted to relative ${\mathcal{D}}$-modules underlying a regular mixed twistor ${\mathcal{D}}$-module, this functor satisfies the left quasi-inverse property.