We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the continuity and differentiability of the Hardy constant with respect to perturbations of the domain in the case where the problem involves the distance from a boundary submanifold. We also investigate the case where only the submanifold is deformed.
We introduce a notion of barycenter of a probability measure related to the symmetric mean of a collection of non-negative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a sequence of dynamical observations converge to the Halász–Székely barycenter of the corresponding distribution.
In this paper, by the introduction of several parameters, we construct a new kernel function which is defined in the whole plane and includes some classical kernel functions. Estimating the weight functions with the techniques of real analysis, we establish a new Hilbert-type inequality in the whole plane, and the constant factor of the newly obtained inequality is proved to be the best possible. Additionally, by means of the partial fraction expansion of the tangent function, some special and interesting inequalities are presented at the end of the paper.
In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$, which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.
Based on the Gale–Ryser theorem [2, 6], for the existence of suitable $(0,1)$-matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
In this paper we obtain some improved
$L^p$
-Hardy and
$L^p$
-Rellich inequalities on bounded domains of Riemannian manifolds. For Cartan–Hadamard manifolds we prove the inequalities with sharp constants and with weights being hyperbolic functions of the Riemannian distance.
Weight criteria for embedding of the weighted Sobolev–Lorentz spaces to the weighted Besov–Lorentz spaces built upon certain mixed norms and iterated rearrangement are investigated. This gives an improvement of some known Sobolev embedding. We achieve the result based on different norm inequalities for the weighted Besov–Lorentz spaces defined in some mixed norms.
We show that the sequence of moments of order less than 1 of averages of i.i.d. positive random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is log-convex and show that this holds eventually for integer moments (after neglecting the first
$p^2$
terms of the sequence).
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs of the van der Waerden lower bound for permanents of doubly stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of results are often proven by giving bounds on how much a particular differential operator can change the capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower matching conjecture.
We first establish a family of sharp Caffarelli–Kohn–Nirenberg type inequalities (shortly, sharp CKN inequalities) on the Euclidean spaces and then extend them to the setting of Cartan–Hadamard manifolds with the same best constant. The quantitative version of these inequalities also is proved by adding a non-negative remainder term in terms of the sectional curvature of manifolds. We next prove several rigidity results for complete Riemannian manifolds supporting the Caffarelli–Kohn–Nirenberg type inequalities with the same sharp constant as in the Euclidean space of the same dimension. Our results illustrate the influence of curvature to the sharp CKN inequalities on the Riemannian manifolds. They extend recent results of Kristály (J. Math. Pures Appl. 119 (2018), 326–346) to a larger class of the sharp CKN inequalities.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
Barnard and Steinerberger [‘Three convolution inequalities on the real line with connections to additive combinatorics’, Preprint, 2019, arXiv:1903.08731] established the autocorrelation inequality
where the constant $0.411$ cannot be replaced by $0.37$. In addition to being interesting and important in their own right, inequalities such as these have applications in additive combinatorics. We show that for $f$ to be extremal for this inequality, we must have
Our central technique for deriving this result is local perturbation of $f$ to increase the value of the autocorrelation, while leaving $||f||_{L^{1}}$ unchanged. These perturbation methods can be extended to examine a more general notion of autocorrelation. Let $d,n\in \mathbb{Z}^{+}$, $f\in L^{1}$, $A$ be a $d\times n$ matrix with real entries and columns $a_{i}$ for $1\leq i\leq n$ and $C$ be a constant. For a broad class of matrices $A$, we prove necessary conditions for $f$ to extremise autocorrelation inequalities of the form
We completely characterize the validity of the inequality $\| u \|_{Y(\mathbb R)} \leq C \| \nabla^{m} u \|_{X(\mathbb R)}$, where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
We present some inequalities for the mappings defined by Dragomir [‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl.167 (1992), 49–56]. We analyse known inequalities connected with these mappings using a recently developed method connected with stochastic orderings and Stieltjes integrals. We show that some of these results are optimal and others may be substantially improved.
We establish inequalities of Jensen’s and Slater’s type in the general setting of a Hermitian unital Banach $\ast$-algebra, analytic convex functions and positive normalised linear functionals.
Zacharias [‘Proof of a conjecture of Merca on an average of square roots’, College Math. J.49 (2018), 342–345] proved Merca’s conjecture that the arithmetic means $(1/n)\sum _{k=1}^{n}\sqrt{k}$ of the square roots of the first $n$ integers have the same floor values as a simple approximating sequence. We prove a similar result for the arithmetic means $(1/n)\sum _{k=1}^{n}\sqrt[3]{k}$ of the cube roots of the first $n$ integers.