We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New classes of conditionally integrable systems of nonlinear reaction–diffusion equations are introduced. They are obtained by extending a well-known nonclassical symmetry of a scalar partial differential equation to a vector equation. New exact solutions of nonlinear predator–prey systems with cross-diffusion are constructed. Infinite dimensional classes of exact solutions are made available for such nonlinear systems. Some of these solutions decay towards extinction and some oscillate or spiral around an interior fixed point. It is shown that the conditionally integrable systems are closely related to the standard diffusive Lotka–Volterra system, but they have additional features.
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.
We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.
We consider a class of generalized nonlocal $p$-Laplacian equations. We find some proper structural conditions to establish a version of nonlocal Harnack inequalities of weak solutions to such nonlocal problems by using the expansion of positivity and energy estimates.
Steel corrosion plays a central role in different technological fields. In this article, we consider a simple case of a corrosion phenomenon which describes a pure iron dissolution in sodium chloride. This article is devoted to prove rigorously that under rather general hypotheses on the initial data, the solution of this iron dissolution model converges to a self-similar profile as
$t\rightarrow +\infty$
. We will do so for an equivalent formulation as presented in the book of Avner Friedman about parabolic equations (Friedman (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ.). In order to prove the convergence result, we apply a comparison principle together with suitable upper and lower solutions.
In this paper, we consider the problem $-\Delta u =-u^{-\beta }\chi _{\{u>0\}} + f(u)$ in $\Omega$ with $u=0$ on $\partial \Omega$, where $0<\beta <1$ and $\Omega$ is a smooth bounded domain in $\mathbb {R}^{N}$, $N\geq 2$. We are able to solve this problem provided $f$ has subcritical growth and satisfy certain hypothesis. We also consider this problem with $f(s)=\lambda s+s^{\frac {N+2}{N-2}}$ and $N\geq 3$. In this case, we are able to obtain a solution for large values of $\lambda$. We replace the singular function $u^{-\beta }$ by a function $g_\epsilon (u)$ which pointwisely converges to $u^{-\beta }$ as $\epsilon \rightarrow 0$. The corresponding energy functional to the perturbed equation $-\Delta u + g_\epsilon (u) = f(u)$ has a critical point $u_\epsilon$ in $H_0^{1}(\Omega )$, which converges to a non-trivial non-negative solution of the original problem as $\epsilon \rightarrow 0$.
In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels
\begin{equation*} u_{t} - \Delta u_t - \Delta u - \int_0^\infty k^{\prime}_{t}(s) \Delta u(t-s) ds + f( u) = g \end{equation*}
on a bounded domain
$\Omega \subset \mathbb{R}^N,\, N\geq 3$
. Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors
$\mathcal{A}=\{A_t\}_{t\in\mathbb{R}}$
in
$H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1(\Omega))$
. Finally, we prove that the asymptotic dynamics of our problem, when
$k_t$
approaches a multiple
$m\delta_0$
of the Dirac mass at zero as
$t\to \infty$
, is close to the one of its formal limit
\begin{equation*}u_{t} - \Delta u_{t} - (1+m)\Delta u + f( u) = g. \end{equation*}
The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel
$k_t(\!\cdot\!)$
depends on time, which allows for instance to describe the dynamics of aging materials.
Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through
$\overline {\partial }$
-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
A linear growth-diffusion equation is studied in a time-dependent interval whose location and length both vary. We prove conditions on the boundary motion for which the solution can be found in exact form and derive the explicit expression in each case. Next, we prove the precise behaviour near the boundary in a ‘critical’ case: when the endpoints of the interval move in such a way that near the boundary there is neither exponential growth nor decay, but the solution behaves like a power law with respect to time. The proof uses a subsolution based on the Airy function with argument depending on both space and time. Interesting links are observed between this result and Bramson's logarithmic term in the nonlinear FKPP equation on the real line. Each of the main theorems is extended to higher dimensions, with a corresponding result on a ball with a time-dependent radius.
We discuss practical methods for computing the space of solutions to an arbitrary homogeneous linear system of partial differential equations with constant coefficients. These rest on the Fundamental Principle of Ehrenpreis–Palamodov from the 1960s. We develop this further using recent advances in computational commutative algebra.
We consider a model for the dynamics of growing cell populations with heterogeneous mobility and proliferation rate. The cell phenotypic state is described by a continuous structuring variable and the evolution of the local cell population density function (i.e. the cell phenotypic distribution at each spatial position) is governed by a non-local advection–reaction–diffusion equation. We report on the results of numerical simulations showing that, in the case where the cell mobility is bounded, compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to explain such numerical results, we carry out formal asymptotic analysis of the model equation using a Hamilton–Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e. the maximum point of the local cell population density function along the phenotypic dimension) satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions of such transport equation and characterise the corresponding minimal speed. Moreover, we show that, when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts may occur. We briefly discuss the implications of our results in the context of glioma growth.
We consider the explicit solution to the axisymmetric diffusion equation. We recast the solution in the form of a Mellin inversion formula, and outline a method to compute a formula for
$u(r,t)$
as a series using the Cauchy residue theorem. As a consequence, we are able to represent the solution to the axisymmetric diffusion equation as a rapidly converging series.
Based on the fact that the incubation periods of epidemic disease in asymptomatically infected and infected individuals are inevitable and different, we propose a diffusive susceptible, asymptomatically infected, symptomatically infected and vaccinated (SAIV) epidemic model with delays in this paper. To see whether epidemic disease can propagate spatially with a constant speed, we focus on the travelling wave solution for this model. When the basic reproduction number of the corresponding spatial-homogenous delayed differential system is greater than one and the wave speed is greater than or equal to the critical speed, we prove that this model admits nontrivial positive travelling wave solutions. Our theoretical results are of benefit to the prevention and control of epidemic.
We derive and numerically implement various asymptotic approximations for the lowest or principal eigenvalue of the Laplacian with a periodic arrangement of localised traps of small \[\mathcal{O}(\varepsilon )\] spatial extent that are centred at the lattice points of an arbitrary Bravais lattice in \[{\mathbb{R}^2}\]. The expansion of this principal eigenvalue proceeds in powers of \[\nu \equiv - 1/\log (\varepsilon {d_c})\], where dc is the logarithmic capacitance of the trap set. An explicit three-term approximation for this principal eigenvalue is derived using strong localised perturbation theory, with the coefficients in this series evaluated numerically by using an explicit formula for the source-neutral periodic Green’s function and its regular part. Moreover, a transcendental equation for an improved approximation to the principal eigenvalue, which effectively sums all the logarithmic terms in powers of v, is derived in terms of the regular part of the periodic Helmholtz Green’s function. By using an Ewald summation technique to first obtain a rapidly converging infinite series representation for this regular part, a simple Newton iteration scheme on the transcendental equation is implemented to numerically evaluate the improved ‘log-summed’ approximation to the principal eigenvalue. From a numerical computation of the PDE eigenvalue problem defined on the fundamental Wigner–Seitz (WS) cell for the lattice, it is shown that the three-term asymptotic approximation for the principal eigenvalue agrees well with the numerical result only for a rather small trap radius. In contrast, the log-summed asymptotic result provides a very close approximation to the principal eigenvalue even when the trap radius is only moderately small. For a circular trap, the first few transcendental correction terms that further improves the log-summed approximation for the principal eigenvalue are derived. Finally, it is shown numerically that, amongst all Bravais lattices with a fixed area of the primitive cell, the principal eigenvalue is maximised for a regular hexagonal arrangement of traps.
This work studies functional difference equations of the second order with a potential belonging to a special class of meromorphic functions. The equations depend on a spectral parameter. Consideration of this type of equations is motivated by applications in diffraction theory and by construction of eigenfunctions for the Laplace operator in angular domains. In particular, such eigenfunctions describe eigenoscillations of acoustic waves in angular domains with ‘semitransparent’ boundary conditions. For negative values of the spectral parameter, we study essential and discrete spectrum of the equations and describe properties of the corresponding solutions. The study is based on the reduction of the functional difference equations to integral equations with a symmetric kernel. A sufficient condition is formulated for the potential that ensures existence of the discrete spectrum. The obtained results are applied for studying the behaviour of eigenfunctions for the Laplace operator in adjacent angular domains with the Robin-type boundary conditions on their common boundary. At infinity, the eigenfunctions vanish exponentially as was expected. However, the rate of such decay depends on the observation direction. In particular, in a vicinity of some directions, the regime of decay is switched from one to another and such asymptotic behaviour is described by a Fresnel-type integral.
Semi-supervised and unsupervised machine learning methods often rely on graphs to model data, prompting research on how theoretical properties of operators on graphs are leveraged in learning problems. While most of the existing literature focuses on undirected graphs, directed graphs are very important in practice, giving models for physical, biological or transportation networks, among many other applications. In this paper, we propose a new framework for rigorously studying continuum limits of learning algorithms on directed graphs. We use the new framework to study the PageRank algorithm and show how it can be interpreted as a numerical scheme on a directed graph involving a type of normalised graph Laplacian. We show that the corresponding continuum limit problem, which is taken as the number of webpages grows to infinity, is a second-order, possibly degenerate, elliptic equation that contains reaction, diffusion and advection terms. We prove that the numerical scheme is consistent and stable and compute explicit rates of convergence of the discrete solution to the solution of the continuum limit partial differential equation. We give applications to proving stability and asymptotic regularity of the PageRank vector. Finally, we illustrate our results with numerical experiments and explore an application to data depth.
A Doyle–Fuller–Newman (DFN) model for the charge and discharge of nano-structured lithium iron phosphate (LFP) cathodes is formulated on the basis that lithium transport within the nanoscale LFP electrode particles is much faster than cell discharge, and is therefore not rate limiting. We present some numerical solutions to the model and show that for relevant parameter values, and a variety of C-rates, it is possible for sharp discharge fronts to form and intrude into the electrode from its outer edge(s). These discharge fronts separate regions of fully utilised LFP electrode particles from those that are not. Motivated by this observation an asymptotic solution to the model is sought. The results of the asymptotic analysis of the DFN model lead to a reduced order model, which we term the reaction front model (or RFM). Favourable agreement is shown between solutions to the RFM and the full DFN model in appropriate parameter regimes. The RFM is significantly cheaper to solve than the DFN model, and therefore has the potential to be used in scenarios where computational costs are prohibitive, e.g. in optimisation and parameter estimation problems or in engineering control systems.
In this paper, we study the initial-boundary value problem of a repulsion Keller–Segel system with a logarithmic sensitivity modelling the reinforced random walk. By establishing an energy–dissipation identity, we prove the existence of classical solutions in two dimensions as well as existence of weak solutions in the three-dimensional setting. Moreover, it is shown that the weak solutions enjoy an eventual regularity property, i.e., it becomes regular after certain time T > 0. An exponential convergence rate towards the spatially homogeneous steady states is obtained as well. We adopt a new approach developed recently by the author to study the eventual regularity. The argument is based on observation of the exponential stability of constant solutions in scaling-invariant spaces together with certain dissipative property of the global solutions in the same spaces.
A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps.