We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to extend the explicit geometric evaluation of semisimple orbital integrals for smooth kernels for the Casimir operator obtained by the first author to the case of kernels for arbitrary elements in the center of the enveloping algebra.
Relations between the Atiyah–Patodi–Singer rho invariant and signatures of links have been known for a long time, but they were only partially investigated. In order to explore them further, we develop a versatile cut-and-paste formula for the rho invariant, which allows us to manipulate manifolds in a convenient way. With the help of this tool, we give a description of the multivariable signature of a link $L$ as the rho invariant of some closed three-manifold $Y_L$ intrinsically associated with $L$. We study then the rho invariant of the manifolds obtained by the Dehn surgery on $L$ along integer and rational framings. Inspired by the results of Casson and Gordon and Cimasoni and Florens, we give formulas expressing this value as a sum of the multivariable signature of $L$ and some easy-to-compute extra terms.
We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms
$u_j$
with spectral parameter
$t_j$
, where the second moment is a sum over
$t_j$
in a short interval. At the central point
$s=1/2$
of the L-function, our interval is smaller than previous known results. More specifically, for
$\left \lvert t_j\right \rvert $
of size T, our interval is of size
$T^{1/5}$
, whereas the previous best was
$T^{1/3}$
, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at
$s=1/2+it$
provided
$\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $
for any fixed
$\delta>0$
. Since
$\lvert t\rvert $
can be taken significantly smaller than
$\left \lvert t_j\right \rvert $
, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at
$s=1/2$
.
In this paper we study the small-scale equidistribution property of random waves whose coefficients are determined by an unfair coin. That is, the coefficients take value
$+1$
with probability p and
$-1$
with probability
$1-p$
. Random waves whose coefficients are associated with a fair coin are known to equidistribute down to the wavelength scale. We obtain explicit requirements on the deviation from the fair (
$p=0.5$
) coin to retain equidistribution.
In 1955, Lehto showed that, for every measurable function $\psi $ on the unit circle $\mathbb T,$ there is a function f holomorphic in the unit disc, having $\psi $ as radial limit a.e. on $\mathbb T.$ We consider an analogous problem for solutions f of homogenous elliptic equations $Pf=0$ and, in particular, for holomorphic functions on Riemann surfaces and harmonic functions on Riemannian manifolds.
A Birkhoff billiard is a system describing the inertial motion of a point mass inside a strictly convex planar domain, with elastic reflections at the boundary. The study of the associated dynamics is profoundly intertwined with the geometric properties of the domain: while it is evident how the shape determines the dynamics, a more subtle and difficult question is the extent to which the knowledge of the dynamics allows one to reconstruct the shape of the domain. This translates into many intriguing inverse problems and unanswered rigidity questions, which have been the focus of very active research in recent decades. In this paper we describe some of these questions, along with their connection to other problems in analysis and geometry, with particular emphasis on recent results obtained by the authors and their collaborators.
We prove the central limit theorem of random variables induced by distances to Brownian paths and Green functions on the universal cover of Riemannian manifolds of finite volume with pinched negative curvature. We further provide some ergodic properties of Brownian motions and an application of the central limit theorem to the dynamics of geodesic flows in pinched negative curvature.
We give a formulation of a deformation of Dirac operator along orbits of a group action on a possibly noncompact manifold to get an equivariant index and a K-homology cycle representing the index. We apply this framework to noncompact Hamiltonian torus manifolds to define geometric quantization from the viewpoint of index theory. We give two applications. The first one is a proof of a [Q,R]=0 type theorem, which can be regarded as a proof of the Vergne conjecture for abelian case. The other is a Danilov-type formula for toric case in the noncompact setting, which is a localization phenomenon of geometric quantization in the noncompact setting. The proofs are based on the localization of index to lattice points.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
The article studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations given the knowledge of an associated source-to-solution map. We introduce a method to solve inverse problems for nonlinear equations using interaction of three waves that makes it possible to study the inverse problem in all globally hyperbolic spacetimes of the dimension
$n+1\geqslant 3$
and with partial data. We consider the case when the set
$\Omega _{\mathrm{in}}$
, where the sources are supported, and the set
$\Omega _{\mathrm{out}}$
, where the observations are made, are separated. As model problems we study both a quasi-linear equation and a semi-linear wave equation and show in each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of coordinates. The proof consists of two independent components. In the geometric part of the article we introduce a novel geometrical object, the three-to-one scattering relation. We show that this relation determines uniquely the topological, differential and conformal structures of the Lorentzian manifold in a causal diamond set that is the intersection of the future of the point
$p_{in}\in \Omega _{\mathrm{in}}$
and the past of the point
$p_{out}\in \Omega _{\mathrm{out}}$
. In the analytic part of the article we study multiple-fold linearisation of the nonlinear wave equation using Gaussian beams. We show that the source-to-solution map, corresponding to sources in
$\Omega _{\mathrm{in}}$
and observations in
$\Omega _{\mathrm{out}}$
, determines the three-to-one scattering relation. The methods developed in the article do not require any assumptions on the conjugate or cut points.
We construct a Baum–Connes assembly map localised at the unit element of a discrete group $\Gamma$. This morphism, called $\mu _\tau$, is defined in $KK$-theory with coefficients in $\mathbb {R}$ by means of the action of the idempotent $[\tau ]\in KK_{\mathbin {{\mathbb {R}}}}^\Gamma (\mathbb {C},\mathbb {C})$ canonically associated to the group trace of $\Gamma$. We show that the corresponding $\tau$-Baum–Connes conjecture is weaker than the classical version, but still implies the strong Novikov conjecture. The right-hand side of $\mu _\tau$ is functorial with respect to the group $\Gamma$.
The Wadge hierarchy was originally defined and studied only in the Baire space (and some other zero-dimensional spaces). Here we extend the Wadge hierarchy of Borel sets to arbitrary topological spaces by providing a set-theoretic definition of all its levels. We show that our extension behaves well in second countable spaces and especially in quasi-Polish spaces. In particular, all levels are preserved by continuous open surjections between second countable spaces which implies e.g., several Hausdorff–Kuratowski (HK)-type theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge hierarchy of sets but also for its extension to Borel functions from a space to a countable better quasiorder Q.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
Let
$v \ne 0$
be a vector in
${\mathbb {R}}^n$
. Consider the Laplacian on
${\mathbb {R}}^n$
with drift
$\Delta _{v} = \Delta + 2v\cdot \nabla $
and the measure
$d\mu (x) = e^{2 \langle v, x \rangle } dx$
, with respect to which
$\Delta _{v}$
is self-adjoint. This measure has exponential growth with respect to the Euclidean distance. We study weak type
$(1, 1)$
and other sharp endpoint estimates for the Riesz transforms of any order, and also for the vertical and horizontal Littlewood–Paley–Stein functions associated with the heat and the Poisson semigroups.
We provide a systematic study of a non-commutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the non-commutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $\unicode[STIX]{x1D6F7}$ on the non-commutative $2$-torus $\mathbb{A}_{\unicode[STIX]{x1D6FC}}$, $\unicode[STIX]{x1D6FC}\in \mathbb{R}$, we investigate the pointwise limit, $\lim _{n\rightarrow +\infty }(1/n)\sum _{k=0}^{n-1}\unicode[STIX]{x1D706}^{-k}\unicode[STIX]{x1D6F7}^{k}(x)$, for $x\in \mathbb{A}_{\unicode[STIX]{x1D6FC}}$ and $\unicode[STIX]{x1D706}$ a point in the unit circle, and show that there are examples for which the limit does not exist, even in the weak topology.
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only Hölder continuous of order $\unicode[STIX]{x1D70C}<1$ at the end where the measurements are made. More precisely, we construct a toroidal ring $(M,g)$ and we show that there exist in the conformal class of $g$ an infinite number of Riemannian metrics $\tilde{g}=c^{4}g$ such that their corresponding partial Dirichlet-to-Neumann maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect to the metric $g$ and do not satisfy the unique continuation principle.
for triple product L-functions, where
$\Psi $
is a fixed Hecke–Maass form on
$\operatorname {\mathrm {SL}}_2(\mathbb {Z})$
and
$\varphi $
runs over the Hecke–Maass newforms on
$\Gamma _0(p)$
of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent
$5/4$
is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on
$\Gamma _0(p) \backslash \mathbb {H}$
of bounded eigenvalue have very uniformly distributed mass after pushforward to
$\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$
.
Our main result turns out to be closely related to estimates such as
where the sum is over those n for which
$n p$
is a fundamental discriminant and
$\chi _{n p}$
denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
We answer Mark Kac’s famous question, “Can one hear the shape of a drum?” in the positive for orbifolds that are 3-dimensional and 4-dimensional lens spaces; we thus complete the answer to this question for orbifold lens spaces in all dimensions. We also show that the coefficients of the asymptotic expansion of the trace of the heat kernel are not sufficient to determine the above results.
Using Roelcke’s formula for the Green function, we explicitly construct a basis in the kernel of the adjoint Laplacian on a compact polyhedral surface $X$ and compute the $S$-matrix of $X$ at the zero value of the spectral parameter. We apply these results to study various self-adjoint extensions of a symmetric Laplacian on a compact polyhedral surface of genus two with a single conical point. It turns out that the behaviour of the $S$-matrix at the zero value of the spectral parameter is sensitive to the geometry of the polyhedron.