We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.
Erdős asked if, for every pair of positive integers g and k, there exists a graph H having girth (H) = k and the property that every r-colouring of the edges of H yields a monochromatic cycle Ck. The existence of such graphs H was confirmed by the third author and Ruciński.
We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k. We show that there exists a graph H on R10k2; k15k3 vertices (where R = R(Ck; r) is the r-colour Ramsey number for the cycle Ck) having girth (H) = k and the Ramsey property that every r-colouring of the edges of H yields a monochromatic Ck Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.
The size-Ramsey number of a graph F is the smallest number of edges in a graph G with the Ramsey property for F, that is, with the property that any 2-colouring of the edges of G contains a monochromatic copy of F. We prove that the size-Ramsey number of the grid graph on n × n vertices is bounded from above by n3+o(1).
A family of vectors in [k]n is said to be intersecting if any two of its elements agree on at least one coordinate. We prove, for fixed k ≥ 3, that the size of any intersecting subfamily of [k]n invariant under a transitive group of symmetries is o(kn), which is in stark contrast to the case of the Boolean hypercube (where k = 2). Our main contribution addresses limitations of existing technology: while there are now methods, first appearing in work of Ellis and the third author, for using spectral machinery to tackle problems in extremal set theory involving symmetry, this machinery relies crucially on the interplay between up-sets, biased product measures, and threshold behaviour in the Boolean hypercube, features that are notably absent in the problem considered here. To circumvent these barriers, introducing ideas that seem of independent interest, we develop a variant of the sharp threshold machinery that applies at the level of products of posets.
It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.
We prove that sets with positive upper Banach density in sufficiently large dimensions contain congruent copies of all sufficiently large dilates of three specific higher-dimensional patterns. These patterns are: 2n vertices of a fixed n-dimensional rectangular box, the same vertices extended with n points completing three-term arithmetic progressions, and the same vertices extended with n points completing three-point corners. Our results provide common generalizations of several Euclidean density theorems from the literature.
We prove a number of results related to a problem of Po-Shen Loh [9], which is equivalent to a problem in Ramsey theory. Let a = (a1, a2, a3) and b = (b1, b2, b3) be two triples of integers. Define a to be 2-less than b if ai < bi for at least two values of i, and define a sequence a1, …, am of triples to be 2-increasing if ar is 2-less than as whenever r < s. Loh asks how long a 2-increasing sequence can be if all the triples take values in {1, 2, …, n}, and gives a log* improvement over the trivial upper bound of n2 by using the triangle removal lemma. In the other direction, a simple construction gives a lower bound of n3/2. We look at this problem and a collection of generalizations, improving some of the known bounds, pointing out connections to other well-known problems in extremal combinatorics, and asking a number of further questions.
Let A be a finite set with , let n be a positive integer, and let $A^n$ denote the discrete $n\text {-dimensional}$ hypercube (that is, $A^n$ is the Cartesian product of n many copies of A). Given a family $\langle D_t:t\in A^n\rangle $ of measurable events in a probability space (a stochastic process), what structural information can be obtained assuming that the events $\langle D_t:t\in A^n\rangle $ are not behaving as if they were independent? We obtain an answer to this problem (in a strong quantitative sense) subject to a mild ‘stationarity’ condition. Our result has a number of combinatorial consequences, including a new (and the most informative so far) proof of the density Hales-Jewett theorem.
We prove that, for any $t \ge 3$, there exists a constant c = c(t) > 0 such that any d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying $\lambda \le c{d^{t - 1}}/{n^{t - 2}}$ contains vertex-disjoint copies of kt covering all but at most ${n^{1 - 1/(8{t^4})}}$ vertices. This provides further support for the conjecture of Krivelevich, Sudakov and Szábo (Combinatorica24 (2004), pp. 403–426) that (n, d, λ)-graphs with n ∈ 3ℕ and $\lambda \le c{d^2}/n$ for a suitably small absolute constant c > 0 contain triangle-factors. Our arguments combine tools from linear programming with probabilistic techniques, and apply them in a certain weighted setting. We expect this method will be applicable to other problems in the field.
We answer four questions from a recent paper of Rao and Shinkar [17] on Lipschitz bijections between functions from {0, 1}n to {0, 1}. (1) We show that there is no O(1)-bi-Lipschitz bijection from Dictator to XOR such that each output bit depends on O(1) input bits. (2) We give a construction for a mapping from XOR to Majority which has average stretch
$O(\sqrt{n})$
, matching a previously known lower bound. (3) We give a 3-Lipschitz embedding
$\phi \colon \{0,1\}^n \to \{0,1\}^{2n+1}$
such that
$${\rm{XOR }}(x) = {\rm{ Majority }}(\phi (x))$$
for all
$x \in \{0,1\}^n$
. (4) We show that with high probability there is an O(1)-bi-Lipschitz mapping from Dictator to a uniformly random balanced function.
Let I be a zero-dimensional ideal in the polynomial ring
$K[x_1,\ldots ,x_n]$
over a field K. We give a bound for the number of roots of I in
$K^n$
counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.
A k-permutation family on n vertices is a set-system consisting of the intervals of k permutations of the integers 1 to n. The discrepancy of a set-system is the minimum over all red–blue vertex colourings of the maximum difference between the number of red and blue vertices in any set in the system. In 2011, Newman and Nikolov disproved a conjecture of Beck that the discrepancy of any 3-permutation family is at most a constant independent of n. Here we give a simpler proof that Newman and Nikolov’s sequence of 3-permutation families has discrepancy $\Omega (\log \,n)$. We also exhibit a sequence of 6-permutation families with root-mean-squared discrepancy $\Omega (\sqrt {\log \,n} )$; that is, in any red–blue vertex colouring, the square root of the expected squared difference between the number of red and blue vertices in an interval of the system is $\Omega (\sqrt {\log \,n} )$.
Let
$\gamma(G)$
and
$${\gamma _ \circ }(G)$$
denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as
$d \rightarrow \infty$
, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of
${n}/{(2d)}$
complete bipartite graphs
$K_{d,d}$
, then
${\gamma_\circ}(G) = \frac{n}{2}$
. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that
${\gamma_\circ}(G) \sim {n}/{2}$
as
$d \rightarrow \infty$
. Therefore both the girth and regularity conditions are required for the main result.
A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$. The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest.
For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$, there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$, every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$-tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.
We employ the absorbing-path method in order to prove two results regarding the emergence of tight Hamilton cycles in the so-called two-path or cherry-quasirandom 3-graphs.
Our first result asserts that for any fixed real α > 0, cherry-quasirandom 3-graphs of sufficiently large order n having minimum 2-degree at least α(n – 2) have a tight Hamilton cycle.
Our second result concerns the minimum 1-degree sufficient for such 3-graphs to have a tight Hamilton cycle. Roughly speaking, we prove that for every d, α > 0 satisfying d + α > 1, any sufficiently large n-vertex such 3-graph H of density d and minimum 1-degree at least $\alpha \left({\matrix{{n - 1} \cr 2 \cr } } \right)$ has a tight Hamilton cycle.
Motivated by problems in percolation theory, we study the following two-player positional game. Let Λm×n be a rectangular grid-graph with m vertices in each row and n vertices in each column. Two players, Maker and Breaker, play in alternating turns. On each of her turns, Maker claims p (as yet unclaimed) edges of the board Λm×n, while on each of his turns Breaker claims q (as yet unclaimed) edges of the board and destroys them. Maker wins the game if she manages to claim all the edges of a crossing path joining the left-hand side of the board to its right-hand side, otherwise Breaker wins. We call this game the (p, q)-crossing game on Λm×n.
Given m, n ∈ ℕ, for which pairs (p, q) does Maker have a winning strategy for the (p, q)-crossing game on Λm×n? The (1, 1)-case corresponds exactly to the popular game of Bridg-it, which is well understood due to it being a special case of the older Shannon switching game. In this paper we study the general (p, q)-case. Our main result is to establish the following transition.
If p ≥ 2q, then Maker wins the game on arbitrarily long versions of the narrowest board possible, that is, Maker has a winning strategy for the (2q, q)-crossing game on Λm×(q+1) for any m ∈ ℕ.
If p ≤ 2q − 1, then for every width n of the board, Breaker has a winning strategy for the (p, q)-crossing game on Λm×n for all sufficiently large board-lengths m.
Our winning strategies in both cases adapt more generally to other grids and crossing games. In addition we pose many new questions and problems.
We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree
$\delta_1(G)>d$
then every vertex of G is contained in a copy of F in G?
We asymptotically determine c1(n, F) when F is the generalized triangle
$K_4^{(3)-}$
, and we give close to optimal bounds in the case where F is the tetrahedron
$K_4^{(3)}$
(the complete 3-graph on 4 vertices).
This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with
$m> n^2/4$
edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.
In this note we study the emergence of Hamiltonian Berge cycles in random r-uniform hypergraphs. For
$r\geq 3$
we prove an optimal stopping time result that if edges are sequentially added to an initially empty r-graph, then as soon as the minimum degree is at least 2, the hypergraph with high probability has such a cycle. In particular, this determines the threshold probability for Berge Hamiltonicity of the Erdős–Rényi random r-graph, and we also show that the 2-out random r-graph with high probability has such a cycle. We obtain similar results for weak Berge cycles as well, thus resolving a conjecture of Poole.
Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by 25 r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the setting of binomial random graphs. That is, we show that if
$p = p(n) = \Omega(n^{-1/(2r)})$
, then with high probability any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.
An ordered hypergraph is a hypergraph whose vertex set is linearly ordered, and a convex geometric hypergraph is a hypergraph whose vertex set is cyclically ordered. Extremal problems for ordered and convex geometric graphs have a rich history with applications to a variety of problems in combinatorial geometry. In this paper, we consider analogous extremal problems for uniform hypergraphs, and determine the order of magnitude of the extremal function for various ordered and convex geometric paths and matchings. Our results generalize earlier works of Braı–Károlyi–Valtr, Capoyleas–Pach, and Aronov–Dujmovič–Morin–Ooms-da Silveira. We also provide a new variation of the Erdős-Ko-Rado theorem in the ordered setting.