We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the Chow ring of the moduli stack
$\mathfrak {M}_{g,n}$
of prestable curves and define the notion of tautological classes on this stack. We extend formulas for intersection products and functoriality of tautological classes under natural morphisms from the case of the tautological ring of the moduli space
$\overline {\mathcal {M}}_{g,n}$
of stable curves. This paper provides foundations for the paper [BS21].
In the appendix (jointly with J. Skowera), we develop the theory of a proper, but not necessary projective, pushforward of algebraic cycles. The proper pushforward is necessary for the construction of the tautological rings of
$\mathfrak {M}_{g,n}$
and is important in its own right. We also develop operational Chow groups for algebraic stacks.
For X a smooth projective variety and $D=D_1+\dotsb +D_n$ a simple normal crossing divisor, we establish a precise cycle-level correspondence between the genus $0$ local Gromov–Witten theory of the bundle $\oplus _{i=1}^n \mathcal {O}_X(-D_i)$ and the maximal contact Gromov–Witten theory of the multiroot stack $X_{D,\vec r}$. The proof is an implementation of the rank-reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants.
We prove that
$164\, 634\, 913$
is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If
$C_{k}$
is the curve
$x^{6} + y^{6} = k$
, we use the existence of morphisms from
$C_{k}$
to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence of rational points on
$C_{k}$
for various k.
We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel–Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition and prove that its global degree is
$2^{g-1}$
. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is
$2^{g-1}$
as well.
We propose an intersection-theoretic method to reduce questions in genus 0 logarithmic Gromov–Witten theory to questions in the Gromov–Witten theory of smooth pairs, in the presence of positivity. The method is applied to the enumerative geometry of rational curves with maximal contact orders along a simple normal crossings divisor and to recent questions about its relationship to local curve counting. Three results are established. We produce counterexamples to the local-logarithmic conjectures of van Garrel–Graber–Ruddat and Tseng–You. We prove that a weak form of the conjecture holds for product geometries. Finally, we explicitly determine the difference between local and logarithmic theories, in terms of relative invariants for which efficient algorithms are known. The polyhedral geometry of the tropical moduli of maps plays an essential and intricate role in the analysis.
We prove a formula, which, given a principally polarized abelian variety $(A,\lambda )$ over the field of algebraic numbers, relates the stable Faltings height of $A$ with the Néron–Tate height of a symmetric theta divisor on $A$. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula can be expressed as the tropical moments of the tropicalizations of $(A,\lambda )$.
We interpret the degrees which arise in Tevelev’s study of scattering amplitudes in terms of moduli spaces of Hurwitz covers. Via excess intersection theory, the boundary geometry of the Hurwitz moduli space yields a simple recursion for the Tevelev degrees (together with their natural two parameter generalisation). We find exact solutions which specialise to Tevelev’s formula in his cases and connect to the projective geometry of lines and Castelnuovo’s classical count of
$g^1_d$
’s in other cases. For almost all values, the calculation of the two parameter generalisation of the Tevelev degree is new. A related count of refined Dyck paths is solved along the way.
Using the theory of ${\mathbf {FS}} {^\mathrm {op}}$ modules, we study the asymptotic behavior of the homology of ${\overline {\mathcal {M}}_{g,n}}$, the Deligne–Mumford compactification of the moduli space of curves, for $n\gg 0$. An ${\mathbf {FS}} {^\mathrm {op}}$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of ${\overline {\mathcal {M}}_{g,n}}$ the structure of an ${\mathbf {FS}} {^\mathrm {op}}$ module and bound its degree of generation. As a consequence, we prove that the generating function $\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$ is rational, and its denominator has roots in the set $\{1, 1/2, \ldots, 1/p(g,i)\},$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$. We also obtain restrictions on the decomposition of the homology of ${\overline {\mathcal {M}}_{g,n}}$ into irreducible $\mathbf {S}_n$ representations.
We prove that the maximal number of conics in a smooth sextic
$K3$
-surface
$X\subset \mathbb {P}^4$
is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible.
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension
$\le 1$
. In this process, we establish the decomposition of Chow groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties resolving Voisin maps for cubic fourfolds.
We give a formula for the cohomological invariants of a root stack, which we apply to compute the cohomological invariants and the Brauer group of the compactification of the stacks of hyperelliptic curves given by admissible double coverings.
We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.
The ergodic properties of two uncoupled oscillators, one horizontal and one vertical, residing in a class of non-rectangular star-shaped polygons with only vertical and horizontal boundaries and impacting elastically from its boundaries are studied. We prove that the iso-energy level sets topology changes non-trivially; the flow on level sets is always conjugated to a translation flow on a translation surface, yet, for some segments of partial energies the genus of the surface is strictly greater than
$1$
. When at least one of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove that for almost all partial energies, including the impacting ones, the flow on level sets is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that there exist intervals of partial energies on which periodic ribbons and additional ergodic components coexist. We prove that for almost all partial energies in such segments the motion is uniquely ergodic on the part of the level set that is not occupied by the periodic ribbons. This implies that ergodic averages project to piecewise smooth weighted averages in the configuration space.
Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$. In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.
We prove that a formula for the ‘pluricanonical’ double ramification cycle proposed by Janda, Pandharipande, Pixton, Zvonkine, and the second-named author is in fact the class of a cycle constructed geometrically by the first-named author. Our proof proceeds by a detailed explicit analysis of the deformation theory of the double ramification cycle, both to first and to higher order.
We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $\mathrm {SL}_n$- and $\mathrm {PGL}_n$-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $\mathrm {SL}_n$-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p-adic integration.
Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.
Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime p of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group
$E(\mathbb {F}_p)$
. We prove unconditionally that
$r(E,p)> 0.72\log \log p$
for infinitely many p, and
$r(E,p)> 0.36 \log p$
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
Let π : X → C be a fibration with integral fibers over a curve C and consider a polarization H on the surface X. Let E be a stable vector bundle of rank 2 on C. We prove that the pullback π*(E) is a H-stable bundle over X. This result allows us to relate the corresponding moduli spaces of stable bundles $${{\mathcal M}_C}(2,d)$$ and $${{\mathcal M}_{X,H}}(2,df,0)$$ through an injective morphism. We study the induced morphism at the level of Brill–Noether loci to construct examples of Brill–Noether loci on fibered surfaces. Results concerning the emptiness of Brill–Noether loci follow as a consequence of a generalization of Clifford’s Theorem for rank two bundles on surfaces.
In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$. We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$, where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$. This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $.