Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:41:38.845Z Has data issue: false hasContentIssue false

8 - Wood ants and their interaction with other organisms

Published online by Cambridge University Press:  05 June 2016

Elva J.H. Robinson
Affiliation:
University of York, Heslington, York,UK
Jenni A. Stockan
Affiliation:
James Hutton Institute, Aberdeen,UK
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen,UK
Jenni A. Stockan
Affiliation:
The James Hutton Institute
Elva J. H. Robinson
Affiliation:
University of York
Get access

Summary

Wood ants (Formica rufa group) interact with a wide range of other organisms at multi-trophic levels. Chapter 6 discusses competitive interactions between wood ants and other ant species, and Chapter 7 explores the fundamental mutualistic interaction between wood ants and aphids. This chapter takes a wider approach still, to explore the effects of wood ants on invertebrate communities on the forest floor and in tree canopies, including their potential impact on invertebrate pests. The multiple mechanisms by which other invertebrates (myrmecophiles) infiltrate and survive in and around ant nests without being harmed are reviewed. Finally, consideration is given to how wood ants affect more distant taxa such as the vegetation surrounding their nests, the trees on which they forage and woodland vertebrates.

Aboveground interactions

The main effects of wood ants on tree-crown invertebrates

The key trophic effects of wood ants are predation of invertebrates and mutualism with aphids (see Chapter 7). These interactions have a considerable influence in shaping the communities of tree-crown invertebrates (Figure 8.1). The ants generally reduce the overall abundance of non-tended aphids and invertebrates of all trophic groups and taxa. In contrast, ant-tended aphid species usually increase in abundance (Warrington and Whittaker 1985a, b; Mahdi and Whittaker 1993; Wimp and Whitham 2001; Punttila et al. 2004). The wood ants both protect their tended aphids and use them as prey items (Billick et al. 2007). Temporary shifts from mutualistic to predatory behaviour may occur when there is a surplus of aphids (Way 1963; Sudd and Franks 1987) and a lack of other abundant prey items, or the ants may target injured, dead or immobile (e.g. moulting) aphids or those producing honeydew of poor quality or quantity (Sakata 1994; see Chapter 7).

The wood ants protect their mutualistic species of aphids by removal of other predatory, parasitic and hyperparasitic invertebrates (Liere and Perfect 2008) and the aphids’ competitors, such as non-ant-tended aphid species and other herbivores (Novgorodova 2005; Billick et al. 2007), which can form a large part of the ants’ prey (Punttila et al. 2004). This helps to secure the ants’ supply of carbohydrate, which they gather from the aphids in the form of honeydew (Mooney and Mandal 2010).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aho, T., Kuitunen, M., Suhonen, J., Jäntti, A. and Hakkari, T. (1999) Reproductive success of Eurasian Treecreepers, Certhia familiaris, lower in territories with wood ants. Ecology 80: 998–1007.Google Scholar
Akre, R. D., Alpert, G. and Alpert, T. (1973) Life cycle and behavior of Microdon cothurnatus in Washington (Diptera: Syrphidae). Journal of the Kansas Entomological Society 46: 327–338.Google Scholar
Alpert, G. D. and Ritcher, P. O. (1975) Notes on the life cycle and myrmecophilous adaptations of Cremastocheilus armatus (Coleoptera: Scarabaeidae). Psyche 82: 283–29.Google Scholar
Atlegrim, O. (2005) Indirect effects of ant predation (Hymenoptera : Formicidae) on bilberry Vaccinium myrtillus. European Journal of Entomology 102: 175–180.Google Scholar
Aubert, A. and Richard, F.-J. (2008) Social management of LPS-induced inflammation in Formica polyctena ants. Brain, Behaviour and Immunity 22: 833–837.Google Scholar
Auger, J., Ogborn, G. L., Pritchett, C.L. and Black, H.L. (2004) Selection of ants by the American black bear (Ursus americanus). Western North American Naturalist 64: 166–174.Google Scholar
Berg-Binder, M. C. and Suarez, A. V. (2012) Testing the directed dispersal hypothesis: are native ant mounds (Formica sp.) favourable microhabitats for an invasive plant?Oecologia 169: 763–772.Google Scholar
Billick, I., Hammer, S., Reithel, J. S. and Abbot, P. (2007) Ant–aphid interactions: are ants friends, enemies, or both?Annals of the Entomological Society of America 100: 887–892.Google Scholar
Boer, P. (2008) Observations of summit disease in Formica rufa LINNAEUS, 1761 (Hymenoptera: Formicidae). Myrmecological News 11: 63–66.Google Scholar
Boer, P., Boting, P., Dijkstra, P. and Vallenduuk, H. (1995) Formicoxenus nitidulus in the Netherlands as guest in Formica nests (Hymenoptera: Formicidae, Myrmicinae). Entomologische Berichten, Amsterdam 55: 1–3.Google Scholar
Brand, J. M., Blum, M. S., Fales, H. M. and Pasteels, J. M. (1973) The chemistry of the defensive secretion of the beetle, Drusilla canaliculata. Journal of Insect Physiology 19: 369–382.Google Scholar
Bristowe, W. S. (1958) The World of Spiders. London: Collins.
Brooks, J. L. (1942) Notes on the ecology and the occurrence in America of the myrmecophilous sowbug, Platyarthrus hoffmanseggii Brandt. Ecology 23: 427–437.Google Scholar
Bruns, H. (1960) Über die Beziehungen zwischen Waldvögeln und Waldameisen. Entomophaga 5(1): 77–80.Google Scholar
Busch, T. (2001) Verbreitung der Gastameise Formicoxenus nitidulus (Nyl.) in Mecklenburg-Vorpommern (Norddeutschland) sowie bemerkenswerte Beobachtungen (Hymenoptera, Formicidae). Ameisenschutz Aktuell 15: 69–86.Google Scholar
Carita, L., Johanna, M., Jussi, P. and Martti, V. (2006) Effects of group size and pine defence chemicals on diprionid sawfly survival against ant predationOecologia 150: 519–526.Google Scholar
Castella, G., Chapuisat, M. and Christe, P. (2008a) Prophylaxis with resin in wood ants. Animal Behaviour 75: 1591–1596.Google Scholar
Castella, G., Chapuisat, M., Moret, Y. and Christe, P. (2008b) The presence of conifer resin decreases the use of the immune system in wood ants. Ecological Entomology 33: 408–412.Google Scholar
Chapuisat, M. (2010) Social evolution: sick ants face death alone. Current Biology 20: R104–R105.Google Scholar
Chapuisat, M., Oppliger, A., Magliano, P. and Christe, P. (2007) Wood ants use resin to protect themselves against pathogens. Proceedings of the Royal Society B: Biological Sciences 274: 2013–2017.Google Scholar
Clark, W. H. and Blom, P. E. (2007) Annotated checklist of the ants of the Idaho National Laboratory (Hymenoptera: Formicidae). Sociobiology 49: 1–117.Google Scholar
Collingwood, C. A. (1965) Myrmecophilous beetles in Ireland, Scotland and Wales. Entomologists’ Record and Journal of Variation 77: 45–47.Google Scholar
Conway, J. R. (1996) A field study of the nesting ecology of the thatching ant, Formica obscuripes Forel, at high altitude in Colorado. Great Basin Naturalist 56: 326–332.Google Scholar
Crutsinger, G. M. and Sanders, N. J. (2005) Aphid-tending ants affect secondary users in leaf shelters and rates of herbivory on Salix hookeriana in a coastal dune habitat. American Midland Naturalist 154: 296–304.Google Scholar
Donisthorpe, H. S. J. K. (1927) The Guests of British Ants. London: Routledge.
Drogla, R. and Lippold, K. (2004) Zur Kenntnis der Pseudoskorpion-Fauna von Ost-Deutschland (Arachnida, Pseudoscorpiones). Arachnologische Mitteilungen 27: 1–54.Google Scholar
Duffield, R. M. (1981) Biology of Microdon fuscipennis (Diptera: Syrphidae) with interpretations of the reproductive strategies of Microdon species found north of Mexico. Proceedings of the Entomological Society of Washington 83: 716–724.Google Scholar
Elgmork, K. and Unander, S. (1998) Brown bear use of ant mounds in Scandinavia. Ursus 10: 269–274.Google Scholar
Elmes, G. W., Barr, B., Thomas, J.A. and Clarke, R.T. (1999) Extreme host specificity by Microdon mutabilis (Diptera: Syrphiae), a social parasite of ants. Proceedings of the Royal Society B: Biological Sciences 266: 447–453.Google Scholar
Espadaler, X. and Santamaria, S. (2012) Ecto- and endoparasitic fungi on ants from the Holarctic region. Psyche 2012: 1–10.Google Scholar
Fain, A. and Chmielewski, W. (1987) The phoretic hypopi of two acarid mites described from ants' nest: Tyrophagus formicetorum Volgin, 1948 and Lasioacarus nidicolus Kadzhaja and Sevastianov 1967. Acarologia 28: 53–61.Google Scholar
Finèr, L., Jürgensen, M. F., Domisch, T., et al. (2013) The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 16: 196–208.Google Scholar
Godzinska, E. J. (1986) Ant predation on Colorado beetle (Leptinotarsa-Decemlineata Say). Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie 102: 1–10.Google Scholar
Gorb, S. N. and Gorb, E. V. (1999) Dropping rates of elaiosome-bearing seeds during transport by ants (Formica polyctena Foerst.): implications for distance dispersal. Acta Oecologia 5: 509–518.Google Scholar
Gusarov, V. I. (2003) A revision of the genus Goniusa Casey, 1906 (Coleoptera: Staphylinidae: Aleocharinae). Zootaxa 164: 1–20.Google Scholar
Haemig, P. D. (1996) Interference from ants alters foraging ecology of great tits. Behavioral Ecology and Sociobiology 38: 25–29.Google Scholar
Haemig, P. D. (1999) Predation risk alters interactions among species: competition and facilitation between ants and nesting birds in a boreal forest. Ecology Letters 2: 178–184.Google Scholar
Härkönen, S. and Sorvari, J. (2014) Species richness of associates of ants in the nests of a red wood ant Formica polyctena. Insect Conservation and Diversity 1: 1–11.Google Scholar
Henderson, G. and Akre, R. D. (1986) Biology of the myrmecophilous cricket, Myrmecophila manni (Orthoptera: Gryllidae). Journal of the Kansas Entomological Society 59: 454–467.Google Scholar
Hölldobler, B. (1967) Zur Physiologie der Gast-Wirt-Beziehungen (myrmecophilie) bei Ameisen. 1. Das Gastverhältnis der Atemeles- und Lomechus-Larven (Col. Staphylinidae) zu Formica (Hym. Formicidae). Zeitschrift für vergleichende Physiologie 56: 1–21.Google Scholar
Hölldobler, B. (1969) Host finding by odor in the myrmecophilic beetle Atemeles pubicollis Bris. (Staphylinidae). Science 166: 757–758.Google Scholar
Hölldobler, B. (1970) Zur Physiologie der Gast-Wirt-Beziehungen (myrmecophilie) bei Ameisen. 2. Das Gastverhältnis das imaginalen Atemeles pubicollis Bris. (Col. Staphylinidae) zu Myrmica and Formica (Hym. Formicidae). Zeitschrift für vergleichende Physiologie 66: 215–250.Google Scholar
Hölldobler, B. and Wilson, E. O. (1990) The Ants. Cambridge, MA:The Belknap Press of Harvard University Press.
Hughes, J. and Broome, A. (2007) Forests and wood ants in Scotland. Information Note 90. Forestry Commission, Edinburgh.
Huhta, V. and Karg, W. (2010) Ten new species in genera Hypoaspis (s.lat.) Canestrini, 1884, Dendrolaelaps (s.lat.) Halbert, 1915, and Ameroseius Berlese, 1903 (Acari: Gamasina) from Finland. Soil Organisms 82: 325–349.Google Scholar
Huhta, V., Siira-Pietikäinen, A. and Räty, M. (2010) Soil fauna of Finland: Acarina, Collembola and Enchytraeidae. Memoranda Societatis pro Fauna et Flora Fennica 86: 59–82.Google Scholar
Ito, F. and Higashi, S. (1990) Effects of red wood ants on weevil community inhabiting oak trees. Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie 110, 483–488.Google Scholar
Johnson, J. B., Miller, T. D., Heraty, J. M. and Merickel, F. W. (1986) Observations on the biology of two species of Orasema (Hymenoptera: Eucharitidae). Proceedings of the Entomological Society of Washington 88, 542–549.Google Scholar
Jurgensen, M. F., Finér, L., Domisch, T., et al. (2008) Organic mound-building ants: their impact on soil properties in temperate and boreal forests. Journal of Applied Entomology 132(4): 266–275.Google Scholar
Karhu, K. J. (1998) Effects of ant exclusion during outbreaks of a defoliator and a sap-sucker on birch. Ecological Entomology 23, 185–194.Google Scholar
Karhu, K. J. and Neuvonen, S. (1998) Wood ants and a geometrid defoliator of birch: predation outweighs beneficial effects through the host plant. Oecologia 113, 509–516.Google Scholar
Kim, C. H. and Murakami, Y. (1983) Ecological-studies on Formica yessensis Forel, with special reference to its effectiveness as a biological control agent of the pine caterpillar moth in Korea. V. Usefulness of Formica yessensis. Journal of the Faculty of Agriculture, Kyushu University 28: 71–82.Google Scholar
Kirsch, R., Vogel, H., Muck, A., et al. (2011) To be or not to be convergent in salicin-based defence in chrysomeline leaf beetle larvae: evidence from Phratora vitellinae salicyl alcohol oxidase. Proceedings of the Royal Society B: Biological Sciences 278: 3225–3232.Google Scholar
Kleespies, R. G., Huger, A. M. and Zimmermann, G. (2008) Diseases of insects and other arthropods: results of diagnostic research over 55 years. Biocontrol Science and Technology 18: 439–484.Google Scholar
Kronauer, D. J. C. and Pierce, N. E. (2011) Myrmecophiles. Current Biology 21(6): R208–R209.Google Scholar
Laakso, J. (1999) Short-term effects of wood ants (Formica aquilonia Yarr.) on soil animal community structure. Soil Biology and Biochemistry 31(3): 337–343.Google Scholar
Laakso, J. and Setälä, H. (1997) Nest mounds of red wood ants (Formica aquilonia): hot spots for litter-dwelling earthworms. Oecologia 111: 565–569.Google Scholar
Laakso, J. and Setälä, H. (1998) Composition and trophic structure of detrital food web in ant nest mounds of Formica aquilonia and in the surrounding forest soil. Oikos 81(2): 266–278.Google Scholar
Laakso, J. and Setälä, H. (2000) Impacts of wood ants (Formica aquilonia Yarr.) on the invertebrate food web of the boreal forest floor. Annales Zoologici Fennici 37(2): 93–100.Google Scholar
Lehtinen, P. T. (1987) Association of uropodid, prodinychid, polyaspid, antennophorid, sejid, microgynid, and zerconid mites with ants. Entomologisk Tidskrift 108: 13–20.Google Scholar
Lenoir, L., Bengtsson, J. and Persson, T. (2003) Effects of Formica ants on soil fauna: results from a short-term exclusion and a long-term natural experiment. Oecologia 134(3): 423–430.Google Scholar
Liere, H. and Perfect, I. (2008) Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environmental Entomology 37: 143–149.Google Scholar
Mahdi, T. and Whittaker, J. B. (1993) Do birch trees (Betula pendula) grow better if foraged by wood ants. Journal of Animal Ecology 62: 101–116.Google Scholar
Majerus, M. E. N. (1989) Coccinella magnifica (Redtenbacher): a myrmecophilous ladybird. British Journal of Entomology and Natural History 2: 97–106.Google Scholar
Majerus, M. E. N., Sloggett, J. J., Godeau, J. F. and Hemptinne, J. L. (2007) Interactions between ants and aphidophagous and coccidophagous ladybirds. Population Ecology 49: 15–27.Google Scholar
Maňák, V., Nordenhem, H., Björklund, N., Lenoir, L. and Nordlander, G. (2013) Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agricultural and Forest Entomology 15: 98–105.Google Scholar
Mann, W. (1911) On some northwestern ants and their guests. Psyche 108: 102–109.Google Scholar
Märkel, F. (1844) Beiträge zur Kenntniss der unter Ameisen lebenden Insekten. Zeitschrift für die Entomologie 5: 193–271.Google Scholar
Martin, S. J., Jenner, E. A. and Drijfhout, F. P. (2007) Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proceedings of the Royal Society of London Series B 274: 2717–2721.Google Scholar
Maruyama, M. and Klimaszewski, J. (2004) A new species of the myrmecophilous genus Goniusa (Coleoptera, Staphylinidae, Aleocharinae) from Canada. Elytra 32: 315–320.Google Scholar
Maruyama, M. and Klimaszewski, J. (2006) Notes on myrmecophilous aleocharines Insecta, Coleoptera, Staphylinidae from Canada, with a description of a new species of Myrmoecia. Bulletin of the National Science Museum Series A (Zoology) 32: 125–131.Google Scholar
Menzel, F., Smith, J. E. and Chandler, P. J. (2006) The sciarid fauna of the British Isles (Diptera: Sciaridae), including descriptions of six new species. Zoological Journal of the Linnean Society 146: 1–147.Google Scholar
Mooney, K. A. and Mandal, K. (2010) Competition hierarchies among ants and predation by birds jointly determine the strength of multi-species ant–aphid mutualisms. Oikos 119: 874–882.Google Scholar
Mooney, K. A. and Tillberg, C. V. (2005) Temporal and spatial variation to ant omnivory in pine forests. Ecology 86: 1225–1235.Google Scholar
Neuvonen, S., Saikkonen, T., Sundström, L., et al. (2012) Stand type is more important than red wood ant abundance for the structure of ground-dwelling arthropod assemblages in managed boreal forests. Agricultural and Forest Entomology 14: 295–305.Google Scholar
Novgorodova, T. A. (2005) Ant–aphid interactions in multispecies ant communities: Some ecological and ethological aspects. European Journal of Entomology 102: 495–501.Google Scholar
Noyes, J. S. (2012) Universal Chalcidoidea Database. http://www.nhm.ac.uk/chalcidoids.
Oliver, T. H., Jones, I., Cook, J. M. and Leather, S. R. (2008) Avoidance responses of an aphidophagous ladybird, Adalia bipunctata, to aphid-tending ants. Ecological Entomology 33: 523–528.Google Scholar
Olofsson, E. (1992) Predation by Formica polyctena Förster (Hym, Formicidae) on newly emerged larvae of Neodiprion sertifer (Geoffroy) (Hym., Diprionidae). Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie 114: 315–319.Google Scholar
O'Rourke, F. J. (1950) The isopod Platyarthrus hoffmanseggi, Brandt, and its relation to ants. The Entomologists Record 15: 28–30.Google Scholar
Otto, D. (2005) Die Roten Waldameisen. Hohenwarsleben, Germany: Westarp Wissenschaften.
Päivinen, J., Ahlroth, P. and Kaitala, V. (2002) Ant-associated beetles of Fennoscandia and Denmark. Entomologica Fennica 13: 20–40.Google Scholar
Päivinen, J., Ahlroth, P., Kaitala, V. and Suhonen, J. (2004) Species richness, abundance and distribution of myrmecophilous beetles in nests of Formica aquilonia ants. Annales Zoologici Fennici 41: 447–454.Google Scholar
Parmentier, T., Dekoninck, W. and Wenseleers, T. (2015) Metapopulation processes affecting diversity and distribution of myrmecophiles associated with red wood ants. Basic and Applied Ecology 16: 553–562.Google Scholar
Peacock, E. R. (1977) Coleoptera: Rhizophagidae. London: The Royal Entomological Society.
Pfeiffer, M., Huttenlocher, H. and Ayasse, M. (2010) Myrmecochorous plants use chemical mimicry to cheat seed-dispering ants. Functional Ecology 24: 545–555.Google Scholar
Poiner, G. (2004) Behaviour and development of Elasmosoma sp. (Neoneurinae: Braconidae: Hymenoptera), an endoparasite of Formica ants (Formicidae: Hymenoptera). Parasitology 128: 521–531.Google Scholar
Punttila, P., Niemelä, P. and Karhu, K. (2004) The impact of wood ants (Hymenoptera : Formicidae) on the structure of invertebrate community on mountain birch (Betula pubescens ssp. czerepanovii). Annales Zoologici Fennici 41: 429–446.Google Scholar
Ratcliffe, B. C. (1976) Notes on the biology of Euphoriaspis hirtipes (Horn) and descriptions of the larva and pupa (Coleoptera: Scarabaeidae). The Coleopterists' Bulletin 1976: 217–225.Google Scholar
Reemer, M. (2013) Review and phylogenetic evaluation of associations between Microdontinae (Diptera: Syrphidae) and ants (Hymenoptera: Formicidae). Psyche: A Journal of Entomology: ID:538316.Google Scholar
Robinson, N. A. (2005) The ‘uninvited guest ant’ Formicoxenus nitidulus (Nylander) in North West England. Bulletin of the Amateur Entomologists' Society 64: 126–128.Google Scholar
Robinson, N. A. and Robinson, E. J. H. (2013) Myrmecophiles and other invertebrate nest associates of the red wood ant Formica rufa L. (Hymenoptera: Formicidae) in north-west England. The British Journal of Entomology and Natural History 26: 67–88.Google Scholar
Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E. and Pell, J. K. (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology 51: 331–357.Google Scholar
Sakata, H. (1994) How an ant decides to prey on or to attend aphids. Research in Population Ecology 36: 45–51.Google Scholar
Schönrogge, K., Barr, B., Wardlaw, J. C., et al. (2002) When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biological Journal of the Linnean Society 75(3): 291–300.Google Scholar
Schönrogge, K., Napper, E., Birkett, M. A., et al. (2008) Host recognition by the specialist hoverfly Microdon mutabilis, a social parasite of the ant Formica lemani. Journal of Chemical Ecology 34(2): 168–178.Google Scholar
Schwartz, E. A. (1890) Myrmecophilous Coleoptera found in temperate North America. Proceedings of the Entomological Society of Washington 1884–1889(4): 238–247.Google Scholar
Seifert, B. (2007) Die Ameisen Mittel- und Nordeuropas. Tauer, Germany: Iutra Verlags.
Sipura, M. (2002) Contrasting effects of ants on the herbivory and growth of two willow species. Ecology 83: 2680–2690.Google Scholar
Sloggett, J. J. and Majerus, M. E. N. (2003) Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). II. Larval behaviour, and ladybird oviposition location. European Journal of Entomology 100: 337–344.Google Scholar
Sloggett, J. J., Wood, R. A. and Majerus, M. E. N. (1998) Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). I. Adult behaviour adaptation, its ecological context and evolution. Insect Behaviour 11: 889–904.Google Scholar
Smith, J. E. and Menzel, F. (2007) New records of British sciarid flies with description of two new species (Diptera, Sciaridae).’ Dipterists Digest 14: 75–86.Google Scholar
Sokolowski, A. and Wiśniewski, J. (1975) Bemerkungen über das Vorkommen von Uropodina Deutonymphen (Acarina) auf Ameisen der Formica rufa-Gruppe (Hym., Formicidae). Insectes Sociaux 22(1): 47–50.Google Scholar
Sorvari, J. (2009) Foraging distances and potentiality in forest pest insect control: an example with two candidate ants (Hymenoptera: Formicidae). Myrmecological News 12: 211–215.Google Scholar
Staniec, B. and Zagaja, M. (2008) Rove-beetles (Coleoptera, Staphylinidae) of ant nests of the vicinities of Leżajsk. Annales Universitatis Mariae Curie 63: 111–127.Google Scholar
Stoev, P. and Lapeva-Gjonova, A. (2005) Myriapods from ants nests in Bulgaria (Chilopoda, Diplopoda). Peckiana 4: 131–142.Google Scholar
Styrsky, J. D. and Eubanks, M. D. (2007) Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B: Biological Sciences 274: 151–164.Google Scholar
Sudd, J. H. and Franks, N. R. (1987) The Behavioural Ecology of Ants. London: Blackie & Son, Ltd.
Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. and Nilsson, M-C. (2011) Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3): 645–656.Google Scholar
Warrington, S. and Whittaker, J. B. (1985a) An experimental field-study of different levels of insect herbivory induced by Formica rufa predation on Sycamore (Acer pseudoplatanus). 1. Lepidoptera larvae. Journal of Applied Ecology 22: 775–785.Google Scholar
Warrington, S. and Whittaker, J. B. (1985b) An experimental field-study of different levels of insect herbivory induced by Formica rufa predation on Sycamore (Acer pseudoplatanus). 2. Aphidoidea. Journal of Applied Ecology 22: 787–796.Google Scholar
Way, M. J. (1963) Mutualism between ants and honeydew producing Homoptera. Annual Review of Entomology 8: 307–344.Google Scholar
Weber, N. A. (1935) The biology of the thatching ant, Formica rufa obscuripes Forel, in North Dakota. Ecological Monographs 5: 165–206.Google Scholar
Wheeler, J. M. (1908a). Studies on Myrmecophiles. I. Cremastochilus. Journal of the New York Entomological Society 16(2): 68–79.Google Scholar
Wheeler, J. M. (1908b) Studies on Myrmecophiles. II. Hetærius. Journal of the New York Entomological Society 16(2): 135–143.Google Scholar
Wheeler, J. M. (1908c). Studies on Myrmecophiles. III. Microdon. Journal of the New York Entomological Society 16(4): 202–213.Google Scholar
Whittaker, J. B. and Warrington, S. (1985) An experimental field-study of different levels of insect herbivory induced by Formica rufa: predation on Sycamore (Acer pseudoplatanus). 3. Effects on tree growth. Journal of Applied Ecology 22: 797–811.Google Scholar
Wilkinson, T. (1865) Ants' nest beetles at Scarborough. The Entomologist's Monthly Magazine 2: 14.Google Scholar
Williams, T. and Franks, N. R. (1988) Population size and growth rate, sex ratio and behaviour in the ant isopod, Platyarthrus hoffmannseggi. Journal of the Zoological Society of London 215: 703–717.Google Scholar
Wimp, G. M. and Whitham, T. G. (2001) Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82: 440–452.Google Scholar
Yao, I. (2012) Seasonal trends in honeydew-foraging strategies in the red wood ant, Formica yessensis (Hymenoptera: Formicidae). Sociobiology 59: 1351–1363.Google Scholar
Youngs, L. C. and Campbell, R. W. (1984) Ants preying on pupae of the Western Spruce Budworm, Choristoneura occidentalis (Lepidoptera, Tortricidae), in Eastern Oregon and Western Montana. Canadian Entomologist 116: 1665–1669.Google Scholar
Zakharov, A.A. and Zakharov, R. A. (2010) Immigration and forming of mixed formicaries in wood ants (Hymenoptera, Formicidae). Zoologicheskii Zhurnal 89: 1421–1431.Google Scholar
Żmihorski, M. (2010) Distribution of red wood ants (Hymenoptera: Formicidae) in the clear-cut areas of a managed forest in Western Poland. Journal of Forest Research 15: 145–148.Google Scholar
Żmihorski, M. (2011) Does the decline of red wood ants after clear-cutting favour epigeic arthropods?European Journal of Entomology 108: 425–430.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×