Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T07:30:35.931Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2022

Massoud Tohidian
Affiliation:
Qualinx B.V., Delft
Iman Madadi
Affiliation:
Qualinx B.V., Delft
Amir Bozorg
Affiliation:
University College Dublin
Robert Bogdan Staszewski
Affiliation:
University College Dublin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tohidian, M., Madadi, I., and Staszewski, R. B.. A fully integrated discrete-time superheterodyne receiver with +90 dBm uncalibrated IIP2. In Proceedings of the IEEE International Solid-State Circuits Conference, 2015.Google Scholar
Yue, C. P. and Wong, S. S.. Scalability of RF CMOS. In Proceedings of the 2005 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium – Digest of Papers, pages 53– 56, 2005.Google Scholar
Diaz, C. H., Tang, D. D., and Sun, J. Y. C.. CMOS technology for MS/RF SoC. IEEE Transactions on Electron Devices, 50(3):557566, 2003.Google Scholar
Tohidian, M., Madadi, I., and Bogdan Staszewski, R.. A 2mW 800MS/s 7th-order discrete-time IIR filter with 400kHz-to-30MHz BW and 100dB stop-band rejection in 65nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 56, pages 174175, 2013.Google Scholar
Tohidian, M., Madadi, I., and Staszewski, R. B.. Analysis and design of a high-order discrete-time passive IIR low-pass filter. IEEE Journal of Solid-State Circuits, 49(11): 25752587, 2014.Google Scholar
Madadi, I., Tohidian, M., and Staszewski, R. B.. A 65nm CMOS high-IF superheterodyne receiver with a High-Q complex BPF. In Proceedings of the 2013 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pages 323326, 2013.Google Scholar
Mirzaei, A., Chehrazi, S., Bagheri, R., and Abidi, A. A.. Analysis of first-order anti-aliasing integration sampler. IEEE Transactions on Circuits and Systems I, 55(10):29943005, 2008.Google Scholar
Mirzaei, A., Darabi, H., and Murphy, D.. A low-power process-scalable superheterodyne receiver with integrated high-Q filters. IEEE Journal of Solid-State Circuits, 46(12):29202932, 2011.Google Scholar
Staszewski, R. B., Muhammad, K., Leipold, D. et al. All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 39(12):22782291, 2004.Google Scholar
Muhammad, K., Ho, Y., Mayhugh, T. L. et al. The first fully integrated quad-band GSM/GPRS receiver in a 90-nm digital CMOS process. IEEE Journal of Solid-State Circuits, 41(8):17721783, 2006.Google Scholar
Bagheri, R., Mirzaei, A., Chehrazi, S. et al. An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 41(12):28602875, 2006.Google Scholar
Geis, A., Ryckaert, J., Bos, L. et al. A 0.5 mm2 power-scalable 0.5–3.8-GHz CMOS DT-SDR receiver with second-order RF band-pass sampler. IEEE Journal of Solid-State Circuits, 45(11):23752387, 2010.Google Scholar
Chen, R. and Hashemi, H.. A 0.5-to-3 GHz software-defined radio receiver using discrete-time RF signal processing. IEEE Journal of Solid-State Circuits, 49(5):10971111, 2014.CrossRefGoogle Scholar
Madadi, I., Tohidian, M., and Staszewski, R. B.. In Press A high IIP2 SAW-less superheterodyne receiver with multi-stage harmonic rejection. IEEE Journal of Solid-State Circuits, 51:332347, 2016.Google Scholar
Madadi, I., Tohidian, M., and Staszewski, R. B.. A TDD/FDD SAW-less superheterodyne receiver with blocker-resilient band-pass filter and multi-stage HR in 28nm CMOS. In 2015 IEEE Symposium on VLSI Circuits – Digest of Technical Papers, pages 1–2, 2015.Google Scholar
Lee, T. H.. The Design of CMOS Radio Frequency Integrated Circuits, 2nd ed., Cambridge University Press, 2004.Google Scholar
Fabiano, I., Sosio, M., Liscidini, A., et al. SAW-Less analog front-end receivers for TDD and FDD. IEEE Journal of Solid-State Circuits, 48(12):30673079, 2013.Google Scholar
Tsai, M. D., Liao, C. F., Wang, C. Y. et al. A multi-band inductor-less SAW-less 2G/3G-TD-SCDMA cellular receiver in 40nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 57, pages 354– 355, 2014.Google Scholar
van Liempd, B., Borremans, J., Martens, E. et al. A 0.9 V 0.4–6 GHz harmonic recombination SDR receiver in 28 nm CMOS with HR3/HR5 and IIP2 calibration. IEEE Journal of Solid-State Circuits, 49(8):18151826, 2014.Google Scholar
Murphy, D., Mirzaei, A., Darabi, H. et al. An LTV analysis of the frequency translational noise-cancelling receiver. IEEE Transactions on Circuits and Systems I, 61(1):266279, 2014.CrossRefGoogle Scholar
Murphy, D., Darabi, H., Abidi, A. et al. A blocker-tolerant, noise-cancelling receiver suitable for wideband wireless applications. IEEE Journal of Solid-State Circuits, 47(12):29432963, 2012.Google Scholar
Kaczman, D., Shah, M., Alam, M. et al. A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2. IEEE Journal of Solid-State Circuits, 44(3):718739, 2009.Google Scholar
Razavi, B.. Fundamentals of Microelectronics, 2nd ed. Wiley, 2013Google Scholar
van Liempd, B., Borremans, J., Cha, S., Martens, E., Suys, H., and Craninckx, J.. IIP2 and HR calibration for an 8-phase harmonic recombination receiver in 28nm. In Proceedings of IEEE Custom Integrated Circuits Conference, pages 2–5, 2013.Google Scholar
Debaillie, B., van Wesemael, P., Vandersteen, G. et al. Calibration of direct-conversion transceivers. IEEE Journal of Selected Topics in Signal Processing, 3(3):488498, 2009.Google Scholar
Digital cellular telecommunications system (Phase 2+); Radio transmission and reception. ETSI TS 100 910 V8.6.0 (2000-09), 2013.Google Scholar
Fabiano, I., Sosio, M., Liscidini, A., and Castello, R.. SAW-less analog front-end receivers for TDD and FDD. IEEE Journal of Solid-State Circuits, 48(12):30673079, 2013.CrossRefGoogle Scholar
Chehrazi, S., Mirzaei, A., and Abidi, A. A.. Second-order intermodulation in current-commutating passive FET mixers. IEEE Transactions on Circuits and Systems I, 56(12):25562568, 2009.Google Scholar
Bautista, E. E., Bastani, B., and Heck, J.. High IIP2 downconversion mixer using dynamic matching. IEEE Journal of Solid-State Circuits, 35(12):19341941, 2000.Google Scholar
Brandolini, M., Rossi, P., Sanzogni, D., and Svelto, F.. A +78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers. IEEE Journal of Solid-State Circuits, 41(3):552559, 2006.Google Scholar
Darabi, H., Kim Hea Joung Kim, H. J., Chiu, J., Ibrahim, B., and Serrano, L.. An IP2 improvement technique for zero-IF down-converters. In Proceedings of the 2006 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 38, pages 171–174, 2006.Google Scholar
Elahi, I. and Muhammad, K.. IIP2 calibration by injecting DC offset at the mixer in a wireless receiver. IEEE Transactions on Circuits and Systems II, 54(12):11351139, 2007.Google Scholar
Dufrene, K. and Weigel, R.. A novel IP2 calibration method for low-voltage downconversion mixers. In Proceedings of the 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.Google Scholar
Huang, Q., Rogin, J., Chen, X. et al. A tri-band SAW-less WCDMA/HSPA RF CMOS transceiver with on-chip DC-DC converter connectable to battery. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 53, pages 60–61, 2010.CrossRefGoogle Scholar
Feng, Y., Takemura, G., Kawaguchi, S., Itoh, N., and Kinget, P.. A low-power low-noise direct-conversion front-end with digitally assisted IIP2 background self calibration. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 53, pages 70–71, 2010.Google Scholar
Dufrêne, K., Boos, Z., and Weigel, R.. A 0.13μm 1.5V CMOS I/Q downconverter with digital adaptive IIP2 calibration. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 2, pages 80–82, 2007.Google Scholar
Dufrêne, K., Boos, Z., and Weigel, R.. Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers. IEEE Journal of Solid-State Circuits, 43(11):24342445, 2008.Google Scholar
Feng, Y., Takemura, G., Kawaguchi, S., Itoh, N., and Kinget, P. R.. Digitally assisted IIP2 calibration for CMOS direct-conversion receivers. IEEE Journal of Solid-State Circuits, 46(10):22532267, 2011.Google Scholar
Chen, M., Wu, Y., and Chang, M. F.. Active 2nd-order intermodulation calibration for direct-conversion receivers. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 38(6), pages 171174, 2006.Google Scholar
Longo, L., Halim, R., Horng, B.-R. et al. A cellular analog front end with a 98 dB IF receiver. In Proceedings of the 1994 IEEE International Solid-State Circuits Conference, pages 226–227, 1994.Google Scholar
Hairapetian, A.. An 81-MHz IF receiver in CMOS. IEEE Journal of Solid-State Circuits, 31(12):19811986, 1996.Google Scholar
Staszewski, B., Muhammad, K., and Leipold, D.. A discrete-time Bluetooth receiver in a 0.13μm digital CMOS process. In Proceedings of the IEEE International Solid-State Circuits Conference, pages 268–269, Feb 2004.Google Scholar
Muhammad, K. and Staszewski, R. B.. Direct RF sampling mixer with recursive filtering in charge domain. Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, pages 577–580, May 2004.Google Scholar
Staszewski, R. B. and Muhammad, K.. Joint common mode voltage and differential offset voltage control scheme in a low-IF receiver. Proceedings of the 2004 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pages 405–408, June 2004.Google Scholar
Tohidian, M., Madadi, I., and Staszewski, R. B.. A fully integrated highly reconfigurable discrete-time superheterodyne receiver. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference, pages 72–74, 2014.Google Scholar
Karvonen, S., Riley, T. A. D., and Kostamovaara, J.. A CMOS quadrature charge-domain sampling circuit with 66-dB SFDR up to 100 MHz. IEEE Transactions on Circuits and Systems I, 52(2):292304, 2005.Google Scholar
Karvonen, S.. Charge-domain sampling of high-frequency signals with embedded filtering. PhD thesis, University of Oulu, 2006.Google Scholar
Ru, Z., Klumperink, E. A. M., and Nauta, B.. Discrete-time mixing receiver architecture for RF-sampling software-defined radio. IEEE Journal of Solid-State Circuits, 45(9):1732– 1745, 2010.Google Scholar
Bruccoleri, F., Klumperink, E. A. M., and Nauta, B.. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2):275282, February 2004.Google Scholar
Ru, Z., Moseley, N. A., Klumperink, E. A. M., and Nauta, B.. Digitally enhanced software-defined radio receiver robust to out-of-band interference. IEEE Journal of Solid-State Circuits, 44(12):33593375, 2009.Google Scholar
Wang, X., Sturm, J., Yan, N., Tan, X., and Min, H.. 0.6–3-GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Transactions on Microwave Theory and Techniques, 60(2):387392, 2012.Google Scholar
Bevilacqua, A. and Niknejad, A. M.. An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers. IEEE Journal of Solid-State Circuits, 39(12):2259– 2268, 2004.Google Scholar
Li, Z., Chen, L., Wang, Z., et al. Low-noise and high-gain wideband LNA with gm-boosting technique. Electronics Letters, 49(18):11261128, 2013.Google Scholar
Zhang, H., Fan, X., and Sinencio, E. S.. A low-power, linearized, ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits, 44(2):320330, 2009.Google Scholar
He, K. C., Li, M. T., Li, C. M., and Tarng, J. H.. Parallel-RC feedback low-noise amplifier for UWB applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(8):582586, 2010.Google Scholar
Wang, S. B. T., Niknejad, A. M., and Brodersen, R. W.. Design of a sub-mW 960-MHz UWB CMOS LNA. IEEE Journal of Solid-State Circuits, 41(11):24492456, 2006.Google Scholar
Moezzi, M. and Sharif Bakhtiar, M.. Wideband LNA using active inductor with multiple feed-forward noise reduction paths. IEEE Transactions on Microwave Theory and Techniques, 60(4):10691078, 2012.Google Scholar
Zhang, F. and Kinget, P. R.. Low-power programmable gain CMOS distributed LNA. IEEE Journal of Solid-State Circuits, 41(6):13331343, 2006.Google Scholar
Murphy, D., Hafez, A., Mirzaei, A., Mikhhemar, M., Darabi, H., Chang, M., and Abidi, A.. A blocker-tolerant wideband noise-canceling receiver with a 2-dB noise figure. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), pages 7476, 2012.CrossRefGoogle Scholar
Blaakmeer, S. C., Klumperink, E. A. M., Leenaerts, D. M. W., and Nauta, B.. Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits, 43(6):13411350, 2008.Google Scholar
Zhang, H. and Sanchez-Sinencio, E.. Linearization techniques for CMOS low noise amplifiers: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1):2236, 2011.Google Scholar
Simitsakis, P., Papananos, Y., and Kytonaki, E. S.. Design of a low voltage-low power 3.1–10.6 GHz UWB RF front-end in a CMOS 65 nm technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(11):833837, 2011.Google Scholar
Bozorg, A. and Staszewski, R. B.. A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse. IEEE Journal of Solid-State Circuits, 55:404415 2021.Google Scholar
Lin, Y. J., Hsu, S. S. H., Jin, J. D., and Chan, C. Y.. A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique. IEEE Microwave and Wireless Components Letters, 17(3):232234, 2007.Google Scholar
Weng, R. M., Liu, C. Y., and Lin, P. C.. A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8):20772083, 2010.Google Scholar
Ansari, A. and Yavari, M.. A very wideband low noise amplifier for cognitive radios. In 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, pages 623–626, 2012.Google Scholar
Madadi, I., Tohidian, M., Cornelissens, K., Vandenameele, P., and Staszewski, R. B.. A high IIP2 SAW-less superheterodyne receiver with multistage harmonic rejection. IEEE Journal of Solid-State Circuits, 51(2):332347, 2016.Google Scholar
Ho, Y.-C., Staszewski, R. B., Muhammad, K., Hung, C.-M., Leipold, D., and Maggio, K.. Charge-domain signal processing of direct RF sampling mixer with discrete-time filters in Bluetooth and GSM receivers. EURASIP Journal on Wireless Communications and Networking, 2006(1):114, 2006.Google Scholar
Liao, C. F. and Liu, S. I.. A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE Journal of Solid-State Circuits, 42(2):329339, 2007.Google Scholar
Toole, B., Plett, C., and Cloutier, M.. RF circuit implications of moderate inversion enhanced linear region in MOSFETs. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(2):319328, 2004.Google Scholar
Razavi, B.. RF Microelectronics, 2nd edition. Prentice Hall Press, 2011.Google Scholar
Kim, S. and Kwon, K.. Broadband balun-LNA employing local feedback gm-boosting technique and balanced loads for low-power low-voltage applications. IEEE Transactions on Circuits and Systems I: Regular Papers, pages 1–10, 2020.Google Scholar
Yu, H., Chen, Y., Boon, C. C., Mak, P.-I., and Martins, R. P.. A 0.096-mm2 1–20-GHz triple-path noise-canceling common-gate common-source LNA with dual complementary pMOS–nMOS configuration. IEEE Transactions on Microwave Theory and Techniques, 68(1):144159, 2020.Google Scholar
Kim, S. and Kwon, K.. A 50MHz – 1 GHz 2.3-dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced loads. IEEE Transactions on Circuits and Systems I, 66(2):546554, 2019.Google Scholar
Regulagadda, S. S., Sahoo, B. D., Dutta, A., Varma, K. Y., and Rao, V. S.. A packaged noise-canceling high-gain wideband low noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(1):1115, 2019.Google Scholar
Jang, J., Kim, H., Lee, G., and Kim, T. W.. Two-stage compact wideband flat gain low-noise amplifier using high-frequency feedforward active inductor. IEEE Transactions on Microwave Theory and Techniques, pages 1–9, 2019.Google Scholar
Yu, H., Chen, Y., Boon, C. C., Li, C., Mak, P.-I., and Martins, R. P.. A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3–0.45 dB. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(1):7175, 2019.Google Scholar
Pan, Z., Qin, C., Ye, Z., Wang, Y., and Yu, Z.. Wideband inductorless low-power LNAs with gm enhancement and noise-cancellation. IEEE Transactions on Circuits and Systems I, 65(1):2638, 2018.Google Scholar
Aravinth Kumar, A. R., Sahoo, B. D., and Dutta, A.. A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Transactions on Circuits and Systems II, 65(7):834838, 2018.Google Scholar
Guo, B., Chen, J., Li, L., Jin, H., and Yang, G.. A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations. IEEE Journal of Solid-State Circuits, 52(5):13311344, 2017.Google Scholar
Parvizi, M., Allidina, K., and El-Gamal, M. N.. Short channel output conductance enhancement through forward body biasing to realize a 0.5 v 250 μW 0.6–4.2 GHz current-reuse CMOS LNA. IEEE Journal of Solid-State Circuits, 51(3):574586, 2016.Google Scholar
Parvizi, M., Allidina, K., and El-Gamal, M. N.. An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback. IEEE Transactions on Microwave Theory and Techniques, 64(6):18431853, 2016.Google Scholar
Bagga, S., Mansano, A. L., Serdijn, W. A., Long, J. R., van Hartingsveldt, K., and Philips, K.. A frequency-selective broadband low-noise amplifier with double-loop transformer feedback. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6):18831891, 2014.Google Scholar
Liu, J. Y.-C., Chen, J.-S., Hsia, C., Yin, P.-Y., and Lu, C.-W.. A wideband inductorless single-to-differential LNA in 0.18 ¯mCMOS technology for digital TV receivers. IEEE Microwave and Wireless Components Letters, 24(7):472474, 2014.Google Scholar
Park, J. W. and Razavi, B.. A harmonic-rejecting CMOS LNA for broadband radios. IEEE Journal of Solid-State Circuits, 48(4):10721084, 2013.Google Scholar
Chen, K. H. and Liu, S. I.. Inductorless wideband CMOS low-noise amplifiers using noise cancelling technique. IEEE Transactions on Circuits and Systems I, 59(59):305315, 2012.Google Scholar
Belmas, F., Hameau, F., and Fournier, J.-M.. A low power inductorless LNA with double Gm enhancement in 130 nm CMOS. IEEE Journal of Solid-State Circuits, 47(5):10941103, 2012.Google Scholar
Zhuo, W., Li, X., Shekhar, S., Embabi, S. H K, Pineda de Gyvez, J., Allstot, D. J., and Sanchez-Sinencio, E.. A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II, 52(12):875879, 2005.Google Scholar
Bruccoleri, F., Klumperink, E.A.M., and Nauta, B.. Generating all two-MOS-transistor amplifiers leads to new wide-band LNAs. IEEE Journal of Solid-State Circuits, 36(7):10321040, 2001.Google Scholar
Bruccoleri, F., Klumperink, E. A. M., and Nauta, B.. Generating all two-MOS-transistor amplifiers leads to new wide-band LNAs. IEEE Journal of Solid-State Circuits, 36(7):10321040, 2001.Google Scholar
Geis, A., Ryckaert, J., Bos, L., Vandersteen, G., Rolain, Y., and Craninckx, J.. A 0.5 mm2 power-scalable 0.5–3.8-GHz CMOS DT-SDR receiver with second-order RF band-pass sampler. IEEE Journal of Solid-State Circuits, 45(11):23752387, 2010.Google Scholar
Tohidian, M., Madadi, I., and Staszewski, R. B.. A fully integrated highly reconfigurable discrete-time superheterodyne receiver. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, pages 1–3, 2014.Google Scholar
Geis, A., Ryckaert, J., Borremans, J., Vandersteen, G., Rolain, Y., and Craninckx, J.. A compact low power SDR receiver with 0.5–20MHz baseband sampled filter. In Proceedings of the 2009 IEEE Radio Frequency Integrated Circuits Symposium, pages 285–288, 2009.Google Scholar
Kiriaki, S., Viswanathan, T. L., Feygin, G., et al. A 160-MHz analog equalizer for magnetic disk read channels. IEEE Journal of Solid-State Circuits, 32(11):18391850, 1997.Google Scholar
Uehara, G. T. and Gray, P. R.. A 100 MHz A/D interface for PRML magnetic disk read channels. IEEE Journal of Solid-State Circuits, 29(12):16061613, 1994.Google Scholar
Lee, S.-S. and Laber, C. A.. A BiCMOS continuous-time filter for video signal processing applications. IEEE Journal of Solid-State Circuits, 33(9):13731382, 1998.Google Scholar
Yang, F. and Enz, C. C.. A low-distortion BiCMOS seventh-order Bessel filter operating at 2.5 V supply. IEEE Journal of Solid-State Circuits, 31(3):321330, 1996.Google Scholar
D’Amico, S., Conta, M., and Baschirotto, A.. A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR. IEEE Journal of Solid-State Circuits, 41(12):27132719, 2006.Google Scholar
Lo, T. Y., Hung, C. C., and Ismail, M.. A wide tuning range Grm m -C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE Journal of Solid-State Circuits, 44(9):25152524, 2009.Google Scholar
Pirola, A., Liscidini, A., and Castello, R.. Current-mode, WCDMA channel filter with in-band noise shaping. IEEE Journal of Solid-State Circuits, 45(9):17701780, 2010.Google Scholar
Savadi Oskooei, M. S., Masoumi, N., Kamarei, M., and Sjoland, H.. A CMOS 4.35-mW +22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX Receivers. IEEE Journal of Solid-State Circuits, 46(6):13821391, 2011.Google Scholar
Vasilopoulos, A., Vitzilaios, G., Theodoratos, G., and Papananos, Y.. A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR. IEEE Journal of Solid-State Circuits, 41(9):19972008, 2006.CrossRefGoogle Scholar
Kousai, S., Hamada, M., Ito, R., and Itakura, T.. A 19.7 MHz, fifth-order active-RC Chebyshev LPF for draft IEEE802.11n with automatic quality-factor tuning scheme. IEEE Journal of Solid-State Circuits, 42(11):23262337, 2007.Google Scholar
Tohidian, M., Madadi, I., and Staszewski, R. B.. A 2mw 800ms/s 7th-order discrete-time IIR filter with 400khz-to-30mhz BW and 100db stop-band rejection in 65nm CMOS. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, pages 174175, 2013.Google Scholar
Ghaderi, M., Nossek, J., and Temes, G.. Narrow-band switched-capacitor bandpass filters. IEEE Transactions on Circuits and Systems, 29(8):557572, 1982.CrossRefGoogle Scholar
Winoto, R., Hueber, G. Nikolic, B., and Staszewski, R. B.. “Discrete time processing of RF signals.” In Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley-IEEE Press, 29:219245, 2011.Google Scholar
Yuan, J.. A charge sampling mixer with embedded filter function for wireless applications. In ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364), pages 315–318, 2000.Google Scholar
Poberezhskiy, Y. S. and Poberezhskiy, G. Y.. Corrections to “Sampling and Signal Reconstruction Circuits Performing Internal Antialiasing Filtering and Their Influence on the Design of Digital Receivers and Transmitters.IEEE Transactions on Circuits and Systems I: Regular Papers, 51(6):12341234, 2004.Google Scholar
Gregorian, R. and Temes, G. C.. Analog MOS Integrated Circuits for Signal Processing. Wiley, New York, 1986.Google Scholar
Nauta, B.. A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27(2):142153, 1992.Google Scholar
Mirzaei, A., Chen, X., Yazdi, A., Chiu, J., Leete, J., and Darabi, H.. A frequency translation technique for SAW-Less 3G receivers. In 2009 Symposium on VLSI Circuits, pages 280– 281, 2009.Google Scholar
Geis, A.. Discrete-time receiver topologies for SDR. PhD thesis, 2010.Google Scholar
Kitsunezuka, M., Tokairin, T., Maeda, T., and Fukaishi, M.. A low-IF/Zero-IF reconfigurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE Journal of Solid-State Circuits, 46(3):572582, 2011.Google Scholar
Tohidian, M., Madadi, I., and Staszewski, R.B.. A fully integrated highly reconfigurable discrete-time superheterodyne receiver. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, pages 7273, 2014.Google Scholar
Franks, L. E. and Sandberg, I. W.. An alternative approach to the realization of network transfer functions: The N-Path filter. Bell Labs Technical Journal, 39(5):13211350, 1960.Google Scholar
Mirzaei, A., Darabi, H., and Murphy, D.. Architectural evolution of integrated M-phase high-Q bandpass filters. IEEE Transactions on Circuits and Systems I, 59(1):5265, 2012.Google Scholar
Ghaffari, A., Klumperink, E. A. M., Soer, M. C. M., and Nauta, B.. Tunable High-Q N-path band-pass filters: Modeling and verification. IEEE Journal of Solid-State Circuits, 46(5):9981010, May 2011.Google Scholar
Darvishi, M., van der Zee, R., and Nauta, B.. Design of active N-path filters. IEEE Journal of Solid-State Circuits, 48(12):29622976, 2013.Google Scholar
Darvishi, M., van der Zee, R., Klumperink, E. A. M., and Nauta, B.. Widely tunable 4th order switched gm-C band-pass filter based on n-path filters. IEEE Journal of Solid-State Circuits, 47(12):31053119, 2012.Google Scholar
Mirzaei, A. and Darabi, H.. Analysis of imperfections on performance of 4-phase passive-mixer-based high-Q bandpass filters in SAW-Less receivers. IEEE Transactions on Circuits and Systems, 58(5):879892, May 2011.Google Scholar
Hueber, G. and Staszewski, R. B.. “Discrete-time processing of RF signals” in Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends, pages 219245. John Wiley & Sons, Inc., 2011.Google Scholar
Karvonen, S., Riley, T. A. D., Kurtti, S., and Kostamovaara, J.. A quadrature charge-domain sampler with embedded FIR and IIR filtering functions. IEEE Journal of Solid-State Circuits, 41(2):507515, 2006.Google Scholar
Staszewski, R. B., Wallberg, J., Rezeq, S., et al. All-digital PLL and GSM/EDGE transmitter in 90nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, pages 316–317, 2005.Google Scholar
K. O. Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies. IEEE Journal of Solid-State Circuits, pages 12491252, 1998.Google Scholar
Mirzaei, A., Darabi, H., Yazdi, A., Zhou, Z., Chang, E., and Suri, P.. A 65 nm CMOS quad-band SAW-Less receiver SoC for GSM/GPRS/EDGE. IEEE Journal of Solid-State Circuits, 46(4):950964, 2011.Google Scholar
Darabi, H.. A blocker filtering technique for SAW-Less wireless receivers. IEEE Journal of Solid-State Circuits, 42(12):27662773, 2007.Google Scholar
Ghaffari, A., Klumperink, E., and Nauta, B.. 8-path tunable RF notch filters for blocker suppression. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, pages 76 –78, 2012.Google Scholar
Madadi, I., Tohidian, M., and Staszewski, R. B.. Analysis and design of I/Q charge-sharing band-pass-filter for superheterodyne receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(8):21142121, 2015.Google Scholar
Morifuji, E., Momose, H. S., Ohguro, T., et al. Future perspective and scaling down roadmap for RF CMOS. 1999 IEEE Symposium on VLSI Technology and Circuits – Digest of Technical Papers (IEEE Cat. No.99CH36325), pages 163–164, 1999.Google Scholar
Lee, K., Nam, I., Kwon, I., Gil, J., Han, K., Park, S., and Seo, B. I.. The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Transactions on Electron Devices, 52(7):14151422, 2005.Google Scholar
Tiemeijer, L. F., Havens, R. J., De Kort, R., et al. Record RF performance of standard 90 nm CMOS technology. IEEE International Electron Devices Meeting 2004 – IEDM Technical Digest, pages 441–444, 2004.Google Scholar
Woerlee, P. H., Knitel, M. J., van Langevelde, R., et al. RF-CMOS performance trends. IEEE Transactions on Electron Devices, 48:17761782, 2001.Google Scholar
Verbruggen, B., Iriguchi, M., de la Guia Solaz, M., et al. A 2.1 mW 11b 410 MS/s dynamic pipelined SAR ADC with background calibration in 28nm digital CMOS. In 2013 IEEE Symposium on VLSI Circuits, pages C268–C269, 2013.Google Scholar
Hueber, G. and Staszewski, R. B.. Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley, 2011.Google Scholar
Weldon, J. A., Rudell, J. C., Narayanaswami, R. S., Otsuka, M., Dedieu, S., and Gray, P. R.. A 1.75 GHz highly-integrated narrow-band CMOS transmitter with harmonic-rejection mixers. In Proceedings of the 2001 IEEE International Solid-State Circuits Conference – Digest of Technical Papers ISSCC (Cat. No.01CH37177), volume 36, pages 160–161, 2003.Google Scholar
Forbes, T., Ho, W. G., and Gharpurey, R.. Design and analysis of harmonic rejection mixers with programmable LO frequency. IEEE Journal of Solid-State Circuits, 48(10):2363– 2374, 2013.Google Scholar
Darabi, H.. Highly integrated and tunable RF front-ends for reconfigurable multi-band transceivers. Cust. Integr. Circuits Conf. (CICC), 2010 IEEE, 2010.Google Scholar
Murphy, D., Darabi, H., and Xu, H.. A noise-cancelling receiver with enhanced resilience to harmonic blockers. In Proceedings of the IEEE International Solid-State Circuits Conference – Digest of Technical Papers, volume 57, pages 68–69, 2014.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×