Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T11:18:25.868Z Has data issue: false hasContentIssue false

19 - Multiple antennas: MIMO systems

Published online by Cambridge University Press:  05 June 2012

Ke-Lin Du
Affiliation:
Concordia University, Montréal
M. N. S. Swamy
Affiliation:
Concordia University, Montréal
Get access

Summary

Introduction

MIMO systems are wireless systems with multiple antenna elements at both ends of the link. MIMO systems can be used for beamforming, diversity combining, or spatial multiplexing. The first two applications are the same as for the smart antennas, while spatial multiplexing is the transmission of multiple data streams on multiple antennas in parallel, leading to a substantial increase in capacity. MIMO technology and turbo coding are the two most prominent recent breakthroughs in wireless communications. MIMO technology promises a significant increase in capacity.

MIMO systems have the ability to exploit, rather than combat, multipath propagation. The separability of the MIMO channel relies on the presence of rich multipath, which makes the channel spatially selective. Thus, MIMO effectively exploits multipath. In contrast, some smart antenna systems perform better in the LOS case, and their optimization criteria are based on the DoA/DoD. Although some smart antenna systems generate good results in the non-LOS channel, they mitigate multipath rather than exploit it.

The maximum spatial diversity obtained for a non-frequency-selective fading MIMO channel is proportional to the product of the numbers of receive and transmit antennas. In the uncorrelated Rayleigh fading channel, the MIMO channel capacity/throughout limit grows linearly with the number of transmit or receive antennas, whichever is smaller − i.e., min (Nt, Nr). According to the analysis and simulation performed in, MIMO can provide a spectral efficiency as high as 20–40 bits/s/Hz.

Type
Chapter
Information
Wireless Communication Systems
From RF Subsystems to 4G Enabling Technologies
, pp. 788 - 869
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×