Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T16:14:43.830Z Has data issue: false hasContentIssue false

Chapter 16 - Beyond corticocentrism

Published online by Cambridge University Press:  05 May 2016

Christopher M. Filley
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
White Matter Dementia , pp. 195 - 202
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, ML, Feldman, RG, Willis, AL. The “subcortical dementia” of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 1974; 37: 121130.CrossRefGoogle Scholar
Austin, JH. Chase, chance, and creativity. New York: Columbia University Press, 1978.Google Scholar
Baltan, S, Carmichael, ST, Matute, C, Xi, G, Zhang, JH, eds. White matter injury in stroke and CNS disease. New York: Springer, 2014.CrossRefGoogle Scholar
Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011; 32: 13411371.CrossRefGoogle ScholarPubMed
Bear, DM. Interictal behavior in temporal lobe epilepsy. In: Schacter, S, Devinsky, O, eds. Behavioral neurology and the legacy of Norman Geschwind. Philadelphia: Lippincott-Raven, 1997: 213222.Google Scholar
Catani, M. Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol 2006; 19: 599606.CrossRefGoogle ScholarPubMed
Catani, M, Thiebaut de Schotten, M. Atlas of human brain connections. New York: Oxford University Press, 2012.CrossRefGoogle Scholar
Catani, M, Thiebaut de Schotten, M, Slater, D, Dell’acqua, F. Connectomic approaches before the connectome. Neuroimage 2013; 80: 213.CrossRefGoogle ScholarPubMed
Damasio, AR. Behavioral neurology: research and practice. Semin Neurol 1984; 4: 117119.CrossRefGoogle Scholar
Davis, BD. The scientist’s world. Microbiol Mol Biol Rev 2000; 64: 112.CrossRefGoogle ScholarPubMed
Debette, S, Markus, HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010; 26; 341: c3666.CrossRefGoogle ScholarPubMed
Erten-Lyons, D, Woltjer, R, Kaye, J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology 2013; 81: 977983.CrossRefGoogle ScholarPubMed
Fields, RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 2008; 31: 361370.CrossRefGoogle ScholarPubMed
Fields, RD. Neuroscience: change in the brain’s white matter. Science 2010; 330: 768769.CrossRefGoogle ScholarPubMed
Filley, CM. The behavioral neurology of cerebral white matter. Neurology 1998; 50: 15351540.CrossRefGoogle ScholarPubMed
Filley, CM. White matter: organization and functional relevance. Neuropsychol Rev 2010; 20: 158173.CrossRefGoogle ScholarPubMed
Filley, CM. White matter: beyond focal disconnection. Neurol Clin 2011; 29: 8197.CrossRefGoogle ScholarPubMed
Filley, CM. The behavioral neurology of white matter. 2nd ed. New York: Oxford University Press, 2012.CrossRefGoogle ScholarPubMed
Filley, CM, Franklin, GM, Heaton, RK, Rosenberg, NL. White matter dementia: clinical disorders and implications. Neuropsychiatry Neuropsychol Behav Neurol 1988; 1: 239254.Google Scholar
Filley, CM, Heaton, RK, Nelson, LM, et al. A comparison of dementia in Alzheimer’s Disease and multiple sclerosis. Arch Neurol 1989; 46: 157161.CrossRefGoogle ScholarPubMed
Geschwind, N. Disconnexion syndromes in animals and man. Brain 1965; 88: 237294, 585644.CrossRefGoogle ScholarPubMed
Geschwind, N. The borderland of psychiatry and neurology: some common misconceptions. In: Blumer, D, Benson, DF, eds. Psychiatric aspects of neurologic disease. Vol. 1. New York: Grune and Stratton, 1975: 18.Google Scholar
Grimes, DA, Schulz, KF. Descriptive studies: what they can and cannot do. Lancet 2002; 359: 145149.CrossRefGoogle Scholar
Grydeland, H, Walhovd, KB, Tamnes, CK, et al. Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. J Neurosci 2013; 33: 1861818630.CrossRefGoogle ScholarPubMed
Haroutunian, V, Katsel, P, Roussos, P, et al. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62: 18561877.CrossRefGoogle ScholarPubMed
Heilman, KM. Creativity and the brain. New York: Taylor and Francis, 2005.CrossRefGoogle Scholar
Inzitari, D, Pracucci, G, Poggesi, A., et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 2009; 6 339: b2477.CrossRefGoogle ScholarPubMed
Lafosse, JM, Corboy, JR, Leehey, MA, et al. MS vs. HD: can white matter and subcortical gray matter pathology be distinguished neuropsychologically? J Clin Exp Neuropsychol 2007; 29: 142154.CrossRefGoogle ScholarPubMed
Launer, LJ. Epidemiology of white matter lesions. Top Magn Reson Imaging 2004; 15: 365367.CrossRefGoogle ScholarPubMed
McHugh, PR, Folstein, MF. Psychiatric syndromes of Huntington’s chorea. In: Benson, DF, Blumer, D, eds. Psychiatric aspects of neurologic disease. Vol. 1. New York: Grune and Stratton, 1975: 267286.Google Scholar
McKee, AC, Stein, TD, Nowinski, CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013; 136: 4364.CrossRefGoogle ScholarPubMed
Medana, IM, Esiri, MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 2003; 26: 515530.CrossRefGoogle Scholar
Men, W, Falk, D, Sun, T, et al. The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 2014; 137: e268.CrossRefGoogle ScholarPubMed
Mesulam, M-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990; 28: 597613.CrossRefGoogle ScholarPubMed
Mesulam, M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 2012; 62: 21822189.CrossRefGoogle ScholarPubMed
Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 2009; 13: 354359.CrossRefGoogle ScholarPubMed
Prusiner, SB. Cell biology: a unifying role for prions in neurodegenerative diseases. Science 2012; 336: 15111513.CrossRefGoogle ScholarPubMed
Ropper, AH, Samuels, MA, Klein, JP. Adams and Victor’s principles of neurology. 10th ed. New York: McGraw-Hill, 2014.Google Scholar
Roth, G, Dicke, U. Evolution of the brain and intelligence. Trends Cogn Sci 2005; 9: 250257.CrossRefGoogle ScholarPubMed
Rushton, JP, Ankney, CD. Whole brain size and general mental ability: a review. Int J Neurosci 2009; 119: 691731.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Pandya, DN. Fiber pathways of the brain. Oxford: Oxford University Press, 2006.CrossRefGoogle Scholar
Schmahmann, JD, Pandya, DN. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex 2008; 44: 10371066.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Smith, EE, Eichler, FS, Filley, CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann NY Acad Sci 2008; 1142: 266309.CrossRefGoogle ScholarPubMed
Schoenemann, PT, Sheehan, MJ, Glotzer, LD. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 2005; 8: 242252.CrossRefGoogle ScholarPubMed
Smaers, JB, Schleicher, A, Zilles, K, Vinicius, L. Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS One 2010; 5: e9123.CrossRefGoogle ScholarPubMed
Sporns, O. The human connectome: a complex network. Ann N Y Acad Sci 2011; 1224: 109125.CrossRefGoogle ScholarPubMed
Takeuchi, H, Taki, Y, Sassa, Y, et al. White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage 2010; 51: 1118.CrossRefGoogle ScholarPubMed
Trapp, BD, Peterson, J, Ransohoff, RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278285.CrossRefGoogle ScholarPubMed
Villoslada, P, Steinman, L, Baranzini, SE. Systems biology and its application to the understanding of neurological diseases. Ann Neurol 2009; 65: 124139.CrossRefGoogle Scholar
Walterfang, M, Wood, SJ, Velakoulis, D, et al. Diseases of white matter and schizophrenia-like psychosis. Aust N Z J Psychiatry 2005; 39: 746756.CrossRefGoogle ScholarPubMed
Wang, Z, Dai, Z, Gong, G, et al. Understanding structural-functional relationships in the human brain: a large-scale network perspective. Neuroscientist 2015; 21: 290305.CrossRefGoogle Scholar
Wen, W, Sachdev, P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 2004; 22: 144154.CrossRefGoogle ScholarPubMed
Whittemore, R, Chao, A, Jang, M, et al. Methods for knowledge synthesis: an overview. Heart Lung 2014; 43: 453461.CrossRefGoogle ScholarPubMed
Witelson, SF, Kigar, DL, Harvey, T. The exceptional brain of Albert Einstein. Lancet 1999; 353: 21492153.CrossRefGoogle ScholarPubMed
Ylikoski, A, Erkinjuntti, T, Raininko, R, et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly: analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 1995; 26: 11711177.CrossRefGoogle ScholarPubMed
Zhang, K, Sejnowski, TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci 2000; 97: 56215626.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×