Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T03:22:31.287Z Has data issue: false hasContentIssue false

3 - The Shape of Life: Morphological Signatures of Ancient Microbial Life in Rocks

from Science

Published online by Cambridge University Press:  08 July 2017

Andreas Losch
Affiliation:
Universität Bern, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. C., Walter, M. R., Burch, I. W. & Kamber, B. S. (2007). 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158, 198227.Google Scholar
Amy, P. S. & Haldeman, D. L. (1997). The Microbiology of the Terrestrial Deep Subsurface, Boca Raton: Lewis.Google Scholar
Awramik, S. M. & Grey, K. (2005). Stromatolites: biogenicity, biosignatures, and bioconfusion. In Hoover, R. B, Levin, G. V, Rozanov, A. Y, and Gladstone, G. R, eds., Astrobiology and Planetary Missions, Proceedings of SPIE 5906, 19.Google Scholar
Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. (2003). Morphological biosignatures and the search for life on Mars. Astrobiology, 3, 351–68.Google Scholar
Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. (2011). Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. The ISME Journal, 5, 717–27.Google Scholar
Claus, G. & Nagy, B. (1961). A microbiological examination of some carbonaceous chondrites. Nature, 192, 594.CrossRefGoogle Scholar
Daubenton, L. J. M. (1782). Sur les causes qui produisent trois sortes d'herborisations dans les pierres. Memoires Acad. Royale, 667–73.Google Scholar
Garcia-Ruiz, J. M., Hyde, S. T., Carnerup, A. M. et al. (2003). Self-assembled silica-carbonate structures and detection of ancient microfossils. Science, 302, 1194–7.Google Scholar
Ghiorse, W. C. & Wilson, J. T. (1988). Microbial ecology of the terrestrial subsurface. Advances in Applied Microbiology, 33, 107–72.Google Scholar
Grosch, E. G. & McLoughlin, N. (2014). Reassessing the biogenicity of Earth's oldest trace fossil with implications for biosignatures in the search for early life. Proceedings of the National Academy of Sciences, 111(23), 8380–5.Google Scholar
Grotzinger, J. P. & Rothman, D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature, 383, 423–5.Google Scholar
Hahn, O. (1880). Die Meteorite (Chondrite) und ihre Organismen, Tübingen: Verlag der H. Laupp'schen Buchhandlung.Google Scholar
Hofmann, B. (1990). Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models. Chemical Geology, 81, 5581.Google Scholar
Hofmann, B. (1991). Mineralogy and geochemistry of reduction spheroids in red beds. Mineralogy and Petrology, 44, 107–24.CrossRefGoogle Scholar
Hofmann, B. A. & Farmer, J. D. (2000). Filamentous fabrics in low-temperature mineral assemblages: Are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planetary and Space Science, 48, 1077–86.CrossRefGoogle Scholar
Hofmann, B. A., Farmer, J. D., von Blanckenburg, F. & Fallick, A. E. (2008). Subsurface filamentous fabrics: An evaluation of possible modes of origins based on morphological and geochemical criteria, with implications for exopalaeontology. Astrobiology, 8, 87117.Google Scholar
Hofmann, B. A. (2011). Reduction spheroids. In Reitner, J. and Thiel, V., eds., Encyclopedia of Geobiology, Dordrecht: Springer, pp. 761–62.Google Scholar
Hofmann, H. J. (1998). Synopsis of Precambrian fossil occurrences in North America. In Lucas, S. B and St-Onge, M. R, eds., Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America, Ottawa: Geological Survey of Canada, pp. 271376.CrossRefGoogle Scholar
Kalkowski, E. (1908). Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der deutschen geologischen Gesellschaft, 60, 68125.Google Scholar
Kallmeyer, J., Pockalny, R., Adhikaria, R. R., Smith, D. C. & D'Hondt, S. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences, 109(40), 16 213–16.Google Scholar
Kretzschmar, M. (1982). Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge). Facies, 7, 237–60.CrossRefGoogle Scholar
Lovley, D. R. & Chapelle, F. H. (1995). Deep subsurface microbial processes. Reviews of Geophysics, 33, 365–81.CrossRefGoogle Scholar
Mata, S. A. & Bottjer, D. J. (2009). Development of lower Triassic wrinkle structures: Implications for the search for life on other planets. Astrobiology, 9, 895906.CrossRefGoogle ScholarPubMed
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L. et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30.Google Scholar
McKinley, J. P., Stevens, T. O. & Westall, F. (2000). Microfossils and paleoenvironments in deep subsurface basalt samples. Geomicrobiology Journal, 17, 4354.Google Scholar
McLoughlin, N., Wilson, L. A. & Brasier, M. D. (2008). Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology, 6, 95105.Google Scholar
Noffke, N. (2015). Ancient sedimentary structures in the < 3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Astrobiology, 15, 124.Google Scholar
Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser formation, Pilbara, Western Australia. Astrobiology, 13, 1103–24.Google Scholar
Parnell, J., Brolly, C., Spinks, S. & Bowden, S. (2016). Metalliferous biosignatures for deep subsurface microbial activity. Origins of Life and Evolution of Biospheres, 46, 107–18.Google Scholar
Pedersen, K. (2000). Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiology Letters, 185, 916.CrossRefGoogle ScholarPubMed
Phelps, T. J., Raione, E. G., White, D. C. & Fliermans, C. B. (1989). Microbial activities in deep subsurface environments. Geomicrobiology Journal, 7, 7992.Google Scholar
Porada, H. & Bouougri, E. (2007). ‘Wrinkle structures' – a critical review. In Schieber, J., Bose, P. K, Eriksson, P. G. et al., eds., Atlas of Microbial Mat Features Preserved Within the Clastic Rock Record, Amsterdam: Elsevier, pp. 135–44.Google Scholar
Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. (2008). Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455, 1101–5.Google Scholar
Razumovsky, G. (1835). Les agates mousseuses. Bulletin de la société géologique de France, 6, 165–8.Google Scholar
Reith, F. (2011). Life in the deep subsurface. Geology, 39, 287–8.Google Scholar
Riding, R. (2011). The nature of stromatolites: 3,500 million years of history and a century of research. In Reitner, J., Quéric, N.-V and Arp, G., eds., Advances in Stromatolite Geobiology, Lecture Notes in Earth Sciences 131, Berlin: Springer, pp. 2974.Google Scholar
Schumann, G., Manz, W., Reitner, J. & Lustrino, M. (2004). Ancient fungal life in north Pacific Eocene oceanic crust. Geomicrobiology Journal, 21, 241–6.Google Scholar
Spinks, S. C., Parnell, J. & Bowden, S. A. (2010). Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record. International Journal of Astrobiology, 9, 209–16.Google Scholar
Suosaari, E. P., Reid, R. P., Playford, P. E. et al. (2016). New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Scientific Reports, 6, 20557.CrossRefGoogle ScholarPubMed
Teske, A. P. (2005). The deep subsurface biosphere is alive and well. Trends in Microbiology, 13, 402–4.Google Scholar
Trewin, N. H. & Knoll, A. H. (1999). Preservation of Devonian chemotrophic filamentous bacteria in calcite veins. Palaios, 14, 288–94.Google Scholar
Tyler, S. A. & Barghoorn, E. S. (1954). Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield. Science, 119, 606–8.Google Scholar
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698702.Google Scholar
Walter, M. R., McLoughlin, S., Drinnan, A. N. & Farmer, J. D. (1998). Paleontology of Devonian thermal spring deposits, Drummond Basin, Australia. Alcheringa, 22, 285314.Google Scholar
Westall, F. (1999). The nature of fossil bacteria: A guide to the search for extraterrestrial life. Journal of Geophysical Research, 104, 16 437–51.Google Scholar
Westall, F. & Folk, R. L. (2003). Exogeneous carbonaceous microstructures in early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Research, 126, 313–30.Google Scholar
Westall, F., Vries, S. T. d., Nijman, W. et al. (2006). The 3.466 Ga “Kitty's Gap Chert,” an early Archean microbial ecosystem. Geological Society of America Special Paper, 405, 105–31.Google Scholar
Williams, A. J., Sumner, D. Y., Alpers, C. N., Karunatillake, S. & Hofmann, B. A. (2015). Preserved filamentous microbial biosignatures in the Brick Flat Gossan, Iron Mountain, California. Astrobiology, 15, 337668.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×