Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T04:07:00.770Z Has data issue: false hasContentIssue false

1 - Reflections on Origins, Life, and the Origins of Life

from Science

Published online by Cambridge University Press:  08 July 2017

Andreas Losch
Affiliation:
Universität Bern, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, J.F., Gesteland, R.F. & Cech, T.R. (2011).The RNA World, 3rd edn, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Atlan, H. (1972). L'organisation biologique et la théorie de l'information, Paris: Hermann.Google Scholar
Attwater, J. & Holliger, P. (2014). A synthetic approach to abiogenesis. Nature Meth., 11, 495–8.Google Scholar
Banack, S.A., Metcalf, J.S., Jiang, L., Craighead, D., Ilag, L.L. & Cox, P.A. (2012). Cyanobacteria produce N-(2-aminoethyl) glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth. PLoS ONE, 7(11).Google Scholar
Bernal, J.D. (1951). The Physical Basis of Life, London: Routledge and Kegan Paul.Google Scholar
Berthelot, M. (1887). La synthèse chimique, 6th edn, Paris: Félix Alacan.Google Scholar
Cairns-Smith, A.G. (1966). The origin of life and the nature of the primitive gene. J. Theor. Biol., 10, 5388.CrossRefGoogle ScholarPubMed
Cairns-Smith, A.G. (1982). Genetic Takeover and the Mineral Origin of Life, Cambridge: Cambridge University Press.Google Scholar
Canguilhem, G. (1952 (1992)). Aspects du vitalisme. In: La connaissance de la vie, 2nd edn, Paris: J. Vrin.Google Scholar
Canguilhem, G. (1988). Ideology and Rationality in the History of the Life Sciences, Cambridge, Mass.: MIT Press.Google Scholar
Crick, F. (1968). The origin of the genetic code. J. Mol. Biol., 38, 367–79.CrossRefGoogle ScholarPubMed
Darwin, C. (1871). Letter to J.D. Hooker 1 February, Darwin Correspondence Project, “Letter no. 7471,” accessed on 28 September 2016, http://www.darwinproject.ac.uk/DCP-LETT-7471Google Scholar
Darwin, C. (1859 (1992)). On The Origin of Species. L'origine des espèces, trans. Barbier, Edmond, revue par Daniel Becquemont, Paris: GF- Flammarion.Google Scholar
Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biol., 3(1).CrossRefGoogle ScholarPubMed
Ferris, J.P., Hill, A.R., Liu, R. & Orgel, L.E. (1996). Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381, 5961.CrossRefGoogle ScholarPubMed
Friedmann, N., Miller, S.L. & Sanchez, R.A. (1971). Primitive Earth synthesis of nicotinic acid derivatives. Science, 171, 1026–7.Google Scholar
Ganti, T. (2003). Chemoton Theory, 2 vols, New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Gilbert, W. (1986). Origin of life: the RNA world. Nature, 319, 618.Google Scholar
Häring, M., Vestergaard, G., Rachel, R., Chen, L., Garrett, R.A. & Prangishvili, D. (2005). Virology: Independent virus development outside a host. Nature, 436, 1101–2.Google Scholar
Hesiode, (2001). Théogonie, trans. Backès, Jean-Louis. Paris: Gallimard.Google Scholar
Kirschner, M., Gerhart, J. & Mitchison, T. (2000). Molecular vitalism. Cell, 100(1), 7988.Google Scholar
Lacan, J. (1972). In La Conférence de Louvain 1972 (extraits), ARTE France, INA. 2001.Google Scholar
Lamarck, J.B. (1809 (1994)). Philosophie zoologique, Paris: Flammarion.Google Scholar
Leaver, M., Domınguez-Cuevas, P., Coxhead, J.M., Daniel, R.A. & Errington, J. (2009). Life without a wall or division machine in Bacillus subtilis. Nature, 457, 849–53.Google Scholar
Leclerc, F., Zaccai, G., Vergne, J., Řìhovà, M., Martel, A. & Maurel, M.C. (2016). Self-assembly controls self-cleavage of HHR from ASBVd (−): a combined SANS and modeling study. Sci. Rep., 6(30287).Google Scholar
Maurel, M.C. (1994). Les origines de la vie, Paris: Syros.Google Scholar
Maurel, M.C. (1999). August Weismann et la génération spontanée de la vie, Paris: Kimé.Google Scholar
Maurel, M-C. (2002). Notion d'origines. Actes du colloque, 15 Mai 2001, MNHN, Paris: “Exobiologie, aspects historiques et épistémologiques”, Cahiers François Viète, n°4, 2002.Google Scholar
Maurel, M.C. (2003). Origines de la vie, originalité du vivant. In Maurel, M.C. & Miquel, P.A. (eds.), Nouveaux débats sur le vivant, Paris: Kimé, pp. 921.Google Scholar
Maurel, M.C. & Décout, J.L. (1999). Origins of life: molecular foundations and new approaches. Tetrahedron, 55(11), 3141–82.CrossRefGoogle Scholar
Orgel, L.E. (1968). Evolution of the genetic apparatus. J. Mol. Biol., 38(3), 381–93.CrossRefGoogle ScholarPubMed
Paecht-Horowitz, M., Berger, J. & Katchalsky, A. (1970). Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates. Nature, 228, 636.CrossRefGoogle ScholarPubMed
Pali, G., Zucchi, C. & Caglioti, L. (2002). Fundamentals of Life, Paris: Elsevier.Google Scholar
Pinheiro, V.B. & Holliger, P. (2012). The XNA world: progress towards replication and evolution of synthetic genetic polymers. Current Opinion in Chemical Biology, 16(3–4), 245–52.CrossRefGoogle ScholarPubMed
Popa, R. (2004). Between Necessity and Probability. Searching for the Definition and Origin of Life, Berlin: Springer.Google Scholar
Popper, K. (1974 (1981)). La quête inachevée. Autobiographie intellectuelle, trans. Bouveresse, Renée, Paris: Calmann-Levy.Google Scholar
Roupnel, G. (1945). La nouvelle Siloë, Paris: Grasset 1945.Google Scholar
Szostak, J.W., Bartel, D.P. & Luisi, P.L. (2001). Synthesizing life. Nature, 409, 387–90.CrossRefGoogle ScholarPubMed
Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological Review, 52(4), 452–84.Google Scholar
Woese, C.R. (1965). On the evolution of the genetic code. PNAS, 54(6), 1546–52.Google ScholarPubMed
Zaug, A.J., Grabowski, P.J. & Cech, T.R. (1983). Autocatalytic cyclisation of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature, 301, 578–83.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×