Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T12:33:01.223Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 February 2022

Avner Vengosh
Affiliation:
Duke University, North Carolina
Erika Weinthal
Affiliation:
Duke University, North Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steffen, W., Grinevald, J., Crutzen, P., McNeill, J., The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011, 369 (1938), 842867.Google Scholar
Nicholson, S., Jinnah, S., New Earth Politics: Essays from the Anthropocene. MIT Press: 2016.Google Scholar
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., Ludwig, C., The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review 2015, 2 (1), 8198.Google Scholar
Steffen, W., Sanderson, A., Jäger, J., Tyson, P. D., Matson, P. A., Moore, B., Oldfield, F., Richardson, K., Schellnhuber, H. J., Turner, B. L., Global Change and the Earth System: A Planet under Pressure. Springer: 2005.CrossRefGoogle Scholar
Lindsey, R. D., Dahlman, L., Climate Change: Global Temperature. www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (8/8/2018).Google Scholar
US Department of Energy, Office of Fossil Energy, Our History. www.energy.gov/fe/about-us/our-history (8/8/2018).Google Scholar
US Energy Information Administration (EIA), Short-Term Energy Outlook. www.eia.gov/outlooks/steo/report/coal.php (07/2018).Google Scholar
US Energy Information Administration (EIA), Coal Explained: Coal Imports and Exports. www.eia.gov/energyexplained/coal/imports-and-exports.php (11/7/2020).Google Scholar
US Energy Information Administration (EIA), US Coal Exports Increased by 61% in 2017 as Exports to Asia More Than Doubled. www.eia.gov/todayinenergy/detail.php?id=35852 (6/22/2018).Google Scholar
US Energy Information Administration (EIA), Countries in and around the Middle East Are Adding Coal-Fired Power Plants. www.eia.gov/todayinenergy/detail.php?id=36172 (8/8/2018).Google Scholar
China Pakistan Economic Corridor (CPEC), CPEC-Energy Priority Projects. http://cpec.gov.pk/energy (8/8/2018).Google Scholar
US Energy Information Administration (EIA), International Energy Outlook. www.eia.gov/outlooks/ieo/.Google Scholar
US Energy Information Administration (EIA), Natural Gas Explained. www.eia.gov/dnav/ng/hist/n9070us2A.htm (8/8/2018).Google Scholar
Zou, C., Ni, Y., Li, J., Kondash, A., Coyte, R., Lauer, N., Cui, H., Liao, F., Vengosh, A., The water footprint of hydraulic fracturing in Sichuan Basin, China. Science of the Total Environment 2018, 630, 349356.Google Scholar
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., Hamburg, S. P., Assessment of methane emissions from the US oil and gas supply chain. Science 2018, 361 (6398), 186188.Google ScholarPubMed
Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., Tans, P., Aircraft-based estimate of total methane emissions from the Barnett Shale region. Environmental Science & Technology 2015, 49 (13), 81248131.Google Scholar
Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O’Sullivan, F., Petron, G., The environmental costs and benefits of fracking. In Annual Review of Environment and Resources, Gadgil, A., Liverman, D. M., eds. Annual Reviews: 2014, Vol. 39, pp. 327362.Google Scholar
Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., Sweeney, C., Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences 2013, 110 (50), 2001820022.Google Scholar
Moore, C. W., Zielinska, B., Pétron, G., Jackson, R. B., Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environmental Science & Technology 2014, 48 (15), 83498359.CrossRefGoogle ScholarPubMed
Smith, M. L., Kort, E. A., Karion, A., Sweeney, C., Herndon, S. C., Yacovitch, T. I., Airborne ethane observations in the Barnett Shale: quantification of ethane flux and attribution of methane emissions. Environmental Science & Technology 2015, 49 (13), 81588166.Google Scholar
Kondash, A., Vengosh, A., Water footprint of hydraulic fracturing. Environmental Science & Technology Letters 2015, 2 (10), 276280.Google Scholar
Kondash, A. J., Lauer, N. E., Vengosh, A., The intensification of the water footprint of hydraulic fracturing. Science Advances 2018, 4 (8).Google Scholar
Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O’Sullivan, F., Pétron, G., The environmental costs and benefits of fracking. Annual Review of Environment and Resources 2014, 39 (1), 327362.Google Scholar
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., Kondash, A., A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology 2014, 48 (15), 83348348.CrossRefGoogle ScholarPubMed
Vengosh, A., Mitch, W. A., McKenzie, L. M., Environmental and human impacts of unconventional energy development. Environmental Science & Technology 2017, 51 (18), 1027110273.Google Scholar
Gleick, P. H., Water and energy. Annual Review of Energy and the Environment 1994, 19, 267299.Google Scholar
Grubert, E., Sanders, K. T., Water use in the United States energy system: a national assessment and unit process inventory of water consumption and withdrawals. Environmental Science & Technology 2018, 52 (11), 66956703.Google Scholar
Grubert, E. A., Water consumption from hydroelectricity in the United States. Advances in Water Resources 2016, 96, 8894.Google Scholar
Meldrum, J., Nettles-Anderson, S., Heath, G., Macknick, J., Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environmental Research Letters 2013, 8, 015031.CrossRefGoogle Scholar
Office of Energy Policy and Systems Analysis, U.S.D.o.E. Environment Baseline Vol. 4: Energy–Water Nexus, 2017, p 93.Google Scholar
Sanders, K. T., Critical review: uncharted waters? The future of the electricity–water nexus. Environmental Science & Technology 2015, 49 (1), 5166.Google Scholar
Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H., Marks, D. H., Multiple metrics for quantifying the intensity of water consumption of energy production. Environmental Research Letters 2014, 9, 105003.Google Scholar
Averyt, K., Macknick, J., Rogers, J., Madden, N., Fisher, J., Meldrum, J., Newmark, R., Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008. Environmental Research Letters 2013, 8, 015001.Google Scholar
Chang, Y., Li, G., Yuan Yao, Y., Zhang, L., Yu, C., Quantifying the water–energy–food nexus: current status and trends. Energies 2016, 9, 6582.Google Scholar
Weinthal, E., Vengosh, A., Neville, C., The nexus of energy and water quality. In The Oxford Handbook of Water Politics and Policy, Conca, K., Weinthal, E., eds. Oxford University Press: 2017.Google Scholar
Endo, A., Tsurita, I., Burnett, K., Orencio, P. M., A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies 2017, 11, 2030.Google Scholar
Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E., Hoover, J. H., Policy and institutional dimensions of the water–energy nexus. Energy Policy 2011, 39 (10), 66226630.Google Scholar
Macknick, J., Sattler, S., Averyt, K., Clemmer, S., Rogers, J., The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environmental Research Letters 2012, 7 (4), 045803.Google Scholar
Ackerman, F., Fisher, J., Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States. Energy Policy 2013, 59, 235241.Google Scholar
Tarroja, B., AghaKouchak, A., Sobhani, R., Feldman, D., Jiang, S., Samuelsen, S., Evaluating options for balancing the water–electricity nexus in California: part 1 – securing water availability. Science of the Total Environment 2014, 497 –498, 697710.Google Scholar
Siddiqi, A., Anadon, L. D., The water–energy nexus in the Middle East and North Africa. Energy Policy 2011, 39 (8), 45294540.Google Scholar
Crow-Miller, B. L. Water, Power, and Development in Twenty-First Century China: The Case of the South–North Water Transfer Project. University of California, Los Angeles: 2013.Google Scholar
International Energy Agency (IEA). Water Energy Nexus – World Energy Outlook 2016, International Energy Agency (IEA): 2017.Google Scholar
Dieter, C. A., Maupin, M. A., Caldwell, R. R., Harris, M. A., Ivahnenko, T. I., Lovelace, J. K., Barber, N. L., Linsey, K. S. Estimated Use of Water in the United States in 2015, Circular 1441, US Geological Survey, 2018.Google Scholar
Macknick, J., Newmark, R., Heath, G., Hallett, K. C., Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environmental Research Letters 2012, 7 (4), 045802.Google Scholar
Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H., Marks, D. H., The water consumption of energy production: an international comparison. Environmental Research Letters 2014, 9, 105002.Google Scholar
Alexey, V., Hal, C., The energy–water nexus: why should we care? Journal of Contemporary Water Research & Education 2009, 143 (1), 1729.Google Scholar
Grubert, E. A., Webber, M. E., Energy for water and water for energy on Maui Island, Hawaii. Environmental Research Letters 2015, 10, 064009.Google Scholar
Pan, S.-Y., Snyder, S. W., Packman, A. I., Lin, Y. J., Chiang, P.-C., Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water–Energy Nexus 2018, 1, 2641.Google Scholar
Spang, E. S., Loge, F. J., A high-resolution approach to mapping energy flows through water infrastructure systems. Journal of Industrial Ecology 2015, 19 (4), 656665.Google Scholar
McCall, J., Macknick, J., Hillman, D. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors National Renewable Energy Laboratory, US Department of Energy: 2016, p 32.Google Scholar
Raptis, C. E., Vliet, M. T. H. v., Pfister, S., Global thermal pollution of rivers from thermoelectric power plants. Environmental Research Letters 2016, 11 (10), 104011.Google Scholar
Goals, U. N. S. D. Take Actions for Sustainable Development Goals. www.un.org/sustainabledevelopment/sustainable-development-goals/.Google Scholar
Oki, T., Kanae, S., Global hydrological cycles and world water resources. Science 2006, 313 (5790), 10681072.Google Scholar
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., Treidel, H., Ground water and climate change. Nature Climate Change 2012, 3, 322.Google Scholar
Arnell, N. W., Climate change and global water resources. Global Environmental Change 1999, 9, S31S49.Google Scholar
Felix, T. P., Petra, D., Stephanie, E., Martina, F., Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environmental Research Letters 2013, 8 (2), 024023.Google Scholar
Roy, S. B., Chen, L., Girvetz, E. H., Maurer, E. P., Mills, W. B., Grieb, T. M., Projecting water withdrawal and supply for future decades in the US under climate change scenarios. Environmental Science & Technology 2012, 46 (5), 25452556.Google Scholar
Postel, S. L., Daily, G. C., Ehrlich, P. R., Human appropriation of renewable fresh water. Science 1996, 271 (5250), 785788.Google Scholar
Gleick, P. H., Water and conflict: fresh water resources and international security. International Security 1993, 18 (1), 79112.Google Scholar
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M.F.P., Global depletion of groundwater resources. Geophysical Research Letters 2010, 37, L20402.Google Scholar
Vörösmarty, C. J., Green, P., Salisbury, J., Lammers, R. B., Global water resources: vulnerability from climate change and population growth. Science 2000, 289 (5477), 284288.Google Scholar
Petra, D., Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters 2009, 4 (3), 035006.Google Scholar
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., Davies, P. M., Global threats to human water security and river biodiversity. Nature 2010, 467, 555.Google Scholar
Gosling, S. N., Arnell, N. W., A global assessment of the impact of climate change on water scarcity. Climatic Change 2016, 134 (3), 371385.Google Scholar
Smith, J. B., Schneider, S. H., Oppenheimer, M., Yohe, G. W., Hare, W., Mastrandrea, M. D., Patwardhan, A., Burton, I., Corfee-Morlot, J., Magadza, C. H. D., Füssel, H.-M., Pittock, A. B., Rahman, A., Suarez, A., van Ypersele, J.-P., Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proceedings of the National Academy of Sciences 2009, 106 (11), 41334137.Google Scholar
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., Fang, J., The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43.Google Scholar
Sowers, J., Vengosh, A., Weinthal, E., Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climatic Change 2011, 104 (3), 599627.Google Scholar
Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and Swenson, S. C., Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris–Euphrates–Western Iran region. Water Resources Research 2013, 49 (2), 904914.Google Scholar
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E., Xoplaki, E., Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 2012, 114 (3), 667687.Google Scholar
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., Kushnir, Y., Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences 2015, 112 (11), 32413246.Google Scholar
Evans, J. P., 21st century climate change in the Middle East. Climatic Change 2009, 92 (3), 417432.Google Scholar
Vicuna, S., Dracup, J. A., The evolution of climate change impact studies on hydrology and water resources in California. Climatic Change 2007, 82 (3), 327350.Google Scholar
MacDonald, G. M., Water, climate change, and sustainability in the southwest. Proceedings of the National Academy of Sciences 2010, 107 (50), 2125621262.Google Scholar
Lund, J. R., Jenkins, M. W., Zhu, T., Tanaka, S. K. Climate warming and California’s water future. In Bizier, P. and DeBarry, P. (eds), World Water and Environmental Resources Congress 2003, American Society of Civil Engineers, https://doi.org/10.1061/9780784406854.Google Scholar
Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., Palmer, R. N., The effects of climate change on the hydrology and water resources of the Colorado River Basin. Climatic Change 2004, 62 (1), 337363.Google Scholar
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., Rodell, M., Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters 2011, 38, L03403.Google Scholar
United Nations Educational, Scientific and Cultural Organization, The UN World Water Development Report 2014 – Water and Energy, UNESCO: 2014, www.unwater.org/publications/world-water-development-report-2014-water-energy/.Google Scholar
Mekonnen, M. M., Hoekstra, A. Y., Four billion people facing severe water scarcity. Science Advances 2016, 2 (2), e1500323.Google Scholar
Dalin, C., Wada, Y., Kastner, T., Puma, M. J., Groundwater depletion embedded in international food trade. Nature 2017, 543, 700.Google Scholar
Government of India, Composite Water Management Index, Aayog, Niti, Government of India: 2018.Google Scholar
Asoka, A., Gleeson, T., Wada, Y., Mishra, V., Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience 2017, 10, 109.Google Scholar
MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., Yadav, S. K., Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience 2016, 9, 762.Google Scholar
Rodell, M., Velicogna, I., Famiglietti, J. S., Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999.Google Scholar
Coyte, R. M., Jain, R. C., Srivastava, S. K., Sharma, K. C., Khalil, A., Ma, L., Vengosh, A., Large-scale uranium contamination of groundwater resources in India. Environmental Science & Technology Letters 2018, 5 (6), 341347.Google Scholar
Vengosh, A., Salinization and saline environments. In Environmental Geochemistry (Volume 9), Treatise in Geochemistry Second Edition, Sherwood Lollar, B., ed., Vol. 11, pp. 325378. Elsevier Science: 2014.Google Scholar
Intergovernmental Panel on Climate Change (IPCC), I.P.o.C.C. Climate Change 2013: The Physical Science Basis. www.ipcc.ch/report/ar5/wg1/ (8/8/2018).Google Scholar
Allen, L., Cohen, M. J., Abelson, D., Miller, B., Fossil fuels and water quality. In The World’s Water Volume 7, Gleick, P. H., Allen, L., Christian-Smith, J., Cohen, M. J., Cooley, H., Heberger, M., Morrison, J., Palaniappan, M., Schulte, P., eds. Island Press: 2011, Vol. 7, pp. 7396. Google Scholar
Jones Luong, P., Weinthal, E., Oil is Not a Curse: Ownership Structure and Institutions in Soviet Successor States. Cambridge University Press: 2010.Google Scholar
United Nation Environmental Program, Environmental Assessment of Ogoniland, 2011, https://postconflict.unep.ch/publications/OEA/01_fwd_es_ch01_UNEP_OEA.pdf.Google Scholar
Weinthal, E., State Making and Environmental Cooperation: Linking Domestic and International Politics in Central Asia. MIT Press: 2002.Google Scholar
Vickers, A., The Energy Policy Act: assessing its impact on utilities. Journal AWWA 1993, 85 (8), 5662.Google Scholar
Freese, B., Coal: A Human History. Penguin Books: 2003.Google Scholar
Granitz, E., Klein, B., Monopolization by “raising rivals’ costs”: the Standard Oil case. Journal of Law and Economics 1996, 39, 147.Google Scholar
Yergin, , There Will Be Oil. The Wall Street Journal, September 17, 2011, www.wsj.com/articles/SB10001424053111904060604576572552998674340.Google Scholar
Brimblecombe, P., Air pollution in industrializing England. Journal of the Air Pollution Control Association 1978, 28 (2), 115118.Google Scholar
Milici, R. C., Flores, R. M., Stricker, G. D., Coal resources, reserves and peak coal production in the United States. International Journal of Coal Geology 2013, 113, 109115.Google Scholar
Yuan, J., The future of coal in China. Resources, Conservation and Recycling 2018, 129, 290292.Google Scholar
Zhang, X., Winchester, N., Zhang, X., The future of coal in China. Energy Policy 2017, 110, 644652.Google Scholar
Luke, H., Brueckner, M., Emmanouil, N., Unconventional gas development in Australia: a critical review of its social license. The Extractive Industries and Society 2018, 5 (4), 648662.CrossRefGoogle Scholar
Zou, C., Zhu, R., Chen, Z.-Q., Ogg, J. G., Wu, S., Dong, D., Qiu, Z., Wang, Y., Wang, L., Lin, S., Cui, J., Su, L., Yang, Z., Organic-matter-rich shales of China. Earth-Science Review 2018, 189, 5178.Google Scholar
Zou, C., Dong, D., Wang, Y., Li, X., Huang, J., Wang, S., Guan, Q., Zhang, C., Wang, H., Liu, H., Bai, W., Liang, F., Lin, W., Zhao, Q., Liu, D., Yang, Z., Liang, P., Sun, S., Qiu, Z., Shale gas in China: characteristics, challenges and prospects (I). Petroleum Exploration and Development 2015, 42 (6), 753767.Google Scholar
Zou, C., Dong, D., Wang, Y., Li, X., Huang, J., Wang, S., Guan, Q., Zhang, C., Wang, H., Liu, H., Bai, W., Liang, F., Lin, W., Zhao, Q., Liu, D., Yang, Z., Liang, P., Sun, S., Qiu, Z., Shale gas in China: characteristics, challenges and prospects (II). Petroleum Exploration and Development 2016, 43 (2), 182196.Google Scholar
US Energy Information Administration (EIA), Energy Units and Calculators Explained. www.eia.gov/energyexplained/index.php?page=about_energy_units (1/19/2019).Google Scholar
Global Energy Statistical Yearbook 2018, Lignite. yearbook.enerdata.net/coal-lignite/coal-production-data.html (1/19/2019).Google Scholar
Roudi-Fahimi, F., Creel, L., De Souza, R. M. Finding the Balance: Population and Water Scarcity in the Middle East and North Africa, Population Reference Bureau Washington, D.C.: 2002.Google Scholar
US Department of Energy, The Water–Energy Nexus: Challenges and Opportunities, US Department of Energy: 2014.Google Scholar
Dieter, C. A., Maupin, M. A., Caldwell, R. R., Harris, M. A., Ivahnenko, T. I., Lovelace, J. K., Barber, N. L., Linsey, K. S., Estimated Use of Water in the United States in 2015, US Geological Survey: 2018.Google Scholar
US Energy Information Administration, What is US Electricity Generation by Energy Source? www.eia.gov/tools/faqs/faq.php?id=427&t=3 (4/12/2020).Google Scholar
Houser, T., Bordoff, J., Marsters, Can Coal Make a Comeback?, Columbia, SIPA, Center on Global Energy Policy: 2017.Google Scholar
World Coal Institute, The Coal Resource: A Comprehensive Overview of Coal, 2009, www.scribd.com/document/18825349/The-Coal-Resource-A-Comprehensive-Overview-of-Coal-World-Coal-Institute.Google Scholar
International Energy Agency (IEA), World Energy Balances: Overview, 2020, www.iea.org/reports/world-energy-balances-overview.Google Scholar
International Energy Agency (IEA), Coal Information: Overview, 2020, www.iea.org/reports/coal-information-overview.Google Scholar
Appunn, K. Coal in Germany, Factsheet. www.cleanenergywire.org/factsheets/coal-germany (22/3/2020).Google Scholar
Kondash, A. J. The Water–Energy Nexus for Hydraulic Fracturing. Duke University PhD Thesis: 2019.Google Scholar
Pan, L., Liu, P., Ma, L., Li, Z., A supply chain based assessment of water issues in the coal industry in China. Energy Policy 2012, 48, 93102.Google Scholar
Acharya, B. S., Kharel, G., Acid mine drainage from coal mining in the United States – An overview. Journal of Hydrology 2020, 588, 125061.Google Scholar
US Energy Information Administration (EIA), Coal/data. www.eia.gov/coal/data.php (5/10/2019).Google Scholar
Chu, S., Carbon capture and sequestration. Science 2009, 325, 1599.Google Scholar
Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., Gwynne, M., Urban air pollution in megacities of the world. Atmospheric Environment 1996, 30 (5), 681686.Google Scholar
Ramanathan, V., Feng, Y., Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment 2009, 43 (1), 3750.Google Scholar
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., Wilson, S., Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 2006, 40 (22), 40484063.Google Scholar
Wang, Q., Shen, W., Ma, Z., Estimation of mercury emission from coal combustion in China. Environmental Science & Technology 2000, 34 (13), 27112713.Google Scholar
Qi, Y., Stern, N., Wu, T., Lu, J., Green, F., China’s post-coal growth. Nature Geoscience 2016, 9, 564566.Google Scholar
Newell, P., Simms, A., Towards a fossil fuel non-proliferation treaty. Climate Policy 2020, 20 (8), 10431054.Google Scholar
Jakob, M., Steckel, J. C., Jotzo, F., Sovacool, B. K., Cornelsen, L., Chandra, R., Edenhofer, O., Holden, C., Löschel, A., Nace, T., Robins, N., Suedekum, J., Urpelainen, J., The future of coal in a carbon-constrained climate. Nature Climate Change 2020, 10 (8), 704707.Google Scholar
US Energy Information Administration (EIA), Layer Information for Interactive State Maps. www.eia.gov/maps/layer_info-m.php.Google Scholar
Meij, R., The fate of trace elements at coal-fired power plants. Fuel 1993, 72 (5), 718.Google Scholar
Meij, R., Trace element behavior in coal-fired power plants. Fuel Processing Technology 1994, 39 (1), 199217.Google Scholar
Meij, R., Prediction of environmental quality of by-products of coal-fired power plants: elemental composition and leaching. In Studies in Environmental Science, Goumans, J. J. J. M., Senden, G. J., van der Sloot, H. A., eds. Elsevier: 1997, Vol. 71, pp. 311325.Google Scholar
Goodarzi, F., Swaine, D. J., Chalcophile elements in western Canadian coals. International Journal of Coal Geology 1993, 24 (1), 281292.Google Scholar
Goodarzi, F., Swaine, D. J., The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chemical Geology 1994, 118 (1–4), 301318.Google Scholar
Swaine, D. J., Origin of trace elements in coal. In Trace Elements in Coal, Swaine, D. J., ed., pp. 826. Butterworth-Heinemann: 1990.Google Scholar
Swaine, D. J., Trace elements in coal and their dispersal during combustion. Fuel Processing Technology 1994, 39 (1–3), 121137.Google Scholar
Dai, S., Ren, D., Chou, C.-L., Finkelman, R. B., Seredin, V. V., Zhou, Y., Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology 2012, 94, 321.Google Scholar
Ketris, M. P., Yudovich, Y. E., Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology 2009, 78 (2), 135148.Google Scholar
Yudovich, Y. E., Ketris, M. P., Arsenic in coal: a review. International Journal of Coal Geology 2005, 61 (3), 141196.Google Scholar
Yudovich, Y. E., Ketris, M. P., Mercury in coal: a review: part 1. Geochemistry. International Journal of Coal Geology 2005, 62 (3), 107134.Google Scholar
Yudovich, Y. E., Ketris, M. P., Mercury in coal: a review: part 2. Coal use and environmental problems. International Journal of Coal Geology 2005, 62 (3), 135165.Google Scholar
Yudovich, Y. E., Ketris, M. P., Chlorine in coal: a review. International Journal of Coal Geology 2006, 67 (1), 127144.Google Scholar
Yudovich, Y. E., Ketris, M. P., Selenium in coal: a review. International Journal of Coal Geology 2006, 67 (1), 112126.Google Scholar
Goldschmidt, V. M., Rare elements in coal ashes. Ind. Eng. Chem. 1935, 27, 11001102.Google Scholar
Finkelman, R. B., Trace and minor elements in coal. In Organic Geochemistry, Engel, M. H., Macko, S., eds. Plenum: 1993, pp. 593607.Google Scholar
Rudnick, R. L., Gao, S., 4.1 – Composition of the continental crust. In Treatise on Geochemistry (Second Edition), Holland, H. D., Turekian, K. K., eds. Elsevier: 2014, pp. 151.Google Scholar
Lauer, N., Vengosh, A., Dai, S., Naturally occurring radioactive materials in coals and coal ash in China. Abstracts of Papers of the American Chemical Society 2018, 255.Google Scholar
Duan, P., Wang, W., Sang, S., Qian, F., Shao, P., Zhao, X., Partitioning of hazardous elements during preparation of high‑uranium coal from Rongyang, Guizhou, China. Journal of Geochemical Exploration 2018, 185, 8192.Google Scholar
Liu, P., Luo, X., Wen, M., Zhang, J., Zheng, C., Gao, W., Ouyang, F., Geoelectrochemical anomaly prospecting for uranium deposits in southeastern China. Applied Geochemistry 2018, 97, 226237.Google Scholar
Sun, Y., Qi, G., Lei, X., Xu, H., Wang, Y., Extraction of Uranium in Bottom Ash Derived from High-Germanium Coals. Procedia Environmental Sciences 2016, 31, 589597.Google Scholar
Yang, J., Concentration and distribution of uranium in Chinese coals. Energy 2007, 32 (3), 203212.Google Scholar
Zhang, Y., Shi, M., Wang, J., Yao, J., Cao, Y., Romero, C. E., Pan, W.-p., Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants. Fuel 2016, 166, 404409.Google Scholar
Dai, S., Finkelman, R. B., Coal as a promising source of critical elements: progress and future prospects. International Journal of Coal Geology 2018, 186, 155164.Google Scholar
Finkelman, R. B., Palmer, C. A., Wang, P., Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology 2018, 185, 138160.Google Scholar
Havelcová, M., Machovič, V., Mizera, J., Sýkorová, I., Borecká, L., Kopecký, L., A multi-instrumental geochemical study of anomalous uranium enrichment in coal. Journal of Environmental Radioactivity 2014, 137, 5263.Google Scholar
Nxumalo, V., Kramers, J., Mongwaketsi, N., Przybyłowicz, W. J., Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2017, 404, 114120.Google Scholar
Chen, G. Q., Li, J. S., Chen, B., Wen, C., Yang, Q., Alsaedi, A., Hayat, T., An overview of mercury emissions by global fuel combustion: The impact of international trade. Renewable & Sustainable Energy Reviews 2016, 65, 345355.Google Scholar
Oberschelp, C., Pfister, S., Raptis, C. E., Hellweg, S., Global emission hotspots of coal power generation. Nature Sustainability 2019, 2 (2), 113121.Google Scholar
Pacyna, J. M., Travnikov, O., De Simone, F., Hedgecock, I. M., Sundseth, K., Pacyna, E. G., Steenhuisen, F., Pirrone, N., Munthe, J., Kindbom, K., Current and future levels of mercury atmospheric pollution on a global scale. Atmospheric Chemistry and Physics 2016, 16 (19), 1249512511.Google Scholar
Washburn, S. J., Blum, J. D., Johnson, M. W., Tomes, J. M., Carnell, P. J., Isotopic characterization of mercury in natural gas via analysis of mercury removal unit catalysts. Acs Earth and Space Chemistry 2018, 2 (5), 462470.Google Scholar
Blum, J. D., Johnson, M. W., Recent developments in mercury stable isotope analysis. In Non-Traditional Stable Isotopes, Teng, F. Z., Watkins, J., Dauphas, N., eds. Mineralogical Society of America: 2017, Vol. 82, pp. 733–757.Google Scholar
Lefticariu, L., Blum, J. D., Gleason, J. D., Mercury isotopic evidence for multiple mercury sources in coal from the Illinois Basin. Environmental Science & Technology 2011, 45 (4), 17241729.Google Scholar
Sherman, L. S., Blum, J. D., Keeler, G. J., Demers, J. D., Dvonch, J. T., Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes. Environmental Science & Technology 2012, 46 (1), 382390.Google Scholar
Sunderland, E. M., Driscoll, C. T., Jr., Hammitt, J. K., Grandjean, P., Evans, J. S., Blum, J. D., Chen, C. Y., Evers, D. C., Jaffe, D. A., Mason, R. P., Goho, S., Jacobs, W., Benefits of regulating hazardous air pollutants from coal and oil fired utilities in the United States. Environmental Science & Technology 2016, 50 (5), 21172120.Google Scholar
Schlesinger, W. H., Vengosh, A., Global boron cycle in the Anthropocene. Global Biogeochemical Cycles 2016, 30 (2), 219230.Google Scholar
Schlesinger, W. H., Klein, E. M., Vengosh, A., Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (52), E11092E11100.Google Scholar
Lauer, N., Vengosh, A., Dai, S., Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science & Technology 2017, 51 (22), 1348713493.Google Scholar
Kondash, A. J., Patino-Echeverri, D., Vengosh, A., Quantification of the water-use reduction associated with the transition from coal to natural gas in the US electricity sector. Environmental Research Letters 2019, 14, 124028.Google Scholar
Zhang, C., Diaz Anadon, L., Life cycle water use of energy production and its environmental impacts in China. Environmental Science and Technology 2013, 47, 14459−14467.Google Scholar
Zhang, C., Anadon, L. D., Mo, H., Zhao, Z., Liu, Z., Water–carbon trade-off in China’s coal power industry. Environmental Science & Technology 2014, 48 (19), 1108211089.Google Scholar
US Energy Information Administration (EIA), EIA-7AAnnual Survey of Coal Production and Preparation. www.eia.gov/survey/#eia-7a.Google Scholar
Gassert, F., Luck, M. Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GCMs. www.wri.org/publication/aqueduct-water-stress-projections-decadal-projections-water-supply-and-demand-using.Google Scholar
Zajisz-Zubek, E., Konieczynsky, J., Coal cleaning versus reduction of mercury and other trace elements’ emissions from coal combustion processes. Archives of Environmental Protection 2014, 40, 115127.Google Scholar
Chen, Q., Wang, H., Clean processing and utilization of coal energy. The Chinese Journal of Process Engineering 2006, 6, 507511.Google Scholar
Pan, L. L., P., Ma, L., Li, Z., A supply chain based assessment of water issues in the coal industry in China. Energy Policy 2012, 48, 93102.CrossRefGoogle Scholar
Jeter, T. S., Sarver, E. A., McNair, H. M., Rezaee, M., 4-MCHM sorption to and desorption from granular activated carbon and raw coal. Chemosphere 2016, 157, 160165.Google Scholar
Monnot, A. D., Novick, R. M., Paustenbach, D. J., Crude 4-methylcyclohexanemethanol (MCHM) did not cause skin irritation in humans in 48-h patch test. Cutaneous and Ocular Toxicology 2017, 36 (4), 351355.Google Scholar
Paustenbach, D. J., Winans, B., Novick, R. M., Green, S. M., The toxicity of crude 4-methylcyclohexanemethanol (MCHM): review of experimental data and results of predictive models for its constituents and a putative metabolite. Critical Reviews in Toxicology 2015, 45, 155.Google Scholar
Sain, A. E., Dietrich, A. M., Smiley, E., Gallagher, D. L., Assessing human exposure and odor detection during showering with crude 4-(methylcyclohexyl)methanol (MCHM) contaminated drinking water. Science of the Total Environment 2015, 538, 298305.Google Scholar
Cooper, W. J., Responding to crisis: the West Virginia chemical spill. Environmental Science & Technology 2014, 48 (6), 30953095.Google Scholar
Burrows, J. E., Cravotta, C. A., Peters, S. C., Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH. Applied Geochemistry 2017, 78, 194210.Google Scholar
Burrows, J. E., Peters, S. C., Cravotta, C. A., Temporal geochemical variations in above- and below-drainage coal mine discharge. Applied Geochemistry 2015, 62, 8495.Google Scholar
Cravotta, C. A., Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent concentrations. Applied Geochemistry 2008, 23 (2), 203226.Google Scholar
Cravotta, C. A., Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Applied Geochemistry 2008, 23 (2), 166202.Google Scholar
Cravotta, C. A., Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA. Applied Geochemistry 2015, 62, 96107.Google Scholar
Cravotta, C. A., Brady, K. B. C., Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Applied Geochemistry 2015, 62, 108130.Google Scholar
Blodau, C., A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of the Total Environment 2006, 369, 307332.Google Scholar
Gray, N. F., Acid mine drainage composition and the implications for its impact on lotic systems. Water Research 1998, 32, 21222134.Google Scholar
Gray, N. F., Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology 1997, 30, 6271.Google Scholar
Blowes, D. W., Ptacek, C. J., Jambor, J. L., Weisener, C.G., The geochemistry of acid mine drainage. In Treaties on Geochemistry, Environmental Geochemistry, Sherwood Lollar, B., ed. Elsevier: 2003, Vol. 9, pp. 149–204.Google Scholar
Ferguson, K. D., Erickson, P. M., Pre-mine prediction of acid mine drainage. In Environmental Management of Solid Waste, Salomons, W., Forstner, U., eds. Springer: 1988.Google Scholar
Pumure, I., Renton, J. J., Smart, R. B., Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: estimation of bioaccessible concentrations. Chemosphere 2010, 78 (11), 12951300.Google Scholar
Griffith, M. B., Norton, S. B., Alexander, L. C., Pollard, A. I., LeDuc, S. D., The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Science of the Total Environment 2012, 417 –418, 112.Google Scholar
Palmer, M. A., Bernhardt, E. S., Schlesinger, W. H., Eshleman, K. N., Foufoula-Georgiou, E., Hendryx, S., Lemly, A. D., Likens, G. E., Loucks, O. L., Power, M. E., White, P. S., Wilcock, P. R., Mountaintop mining consequences. Science 2010, 327, 148149.Google Scholar
Pumure, I., Renton, J. J., Smart, R. B., Accelerated aqueous leaching of selenium and arsenic from coal associated rock samples with selenium speciation using ultrasound extraction. Environmental Geology 2009, 56, 985991.Google Scholar
Vengosh, A., Lindberg, T. T., Merola, B. R., Ruhl, L., Warner, N. R., White, A., Dwyer, G. S., Di Giulio, R. T., Isotopic imprints of mountaintop mining contaminants. Environmental Science & Technology 2013, 47 (17), 1004110048.Google Scholar
Lindberg, T. T., Bernhardt, E. S., Bier, R., Helton, A. M., Merola, R. B., Vengosh, A., Di Giulio, R. T., Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (52), 2092920934.Google Scholar
Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L., Bernhardt, E. S., Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Global Biogeochemical Cycles 2018, 32 (8), 11821194.Google Scholar
Nippgen, F., Ross, M. R. V., Bernhardt, E. S., McGlynn, B. L., Creating a more perennial problem? Mountaintop removal coal mining enhances and sustains saline baseflows of Appalachian watersheds. Environmental Science & Technology 2017, 51 (15), 83248334.Google Scholar
Lutz, B. D., Bernhardt, E. S., Schlesinger, W. H., The environmental price tag on a ton of mountaintop removal coal. PLoS ONE 2013, 8 (9), e73203.Google Scholar
Bernhardt, E. S., Palmer, M. A., The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. In Year in Ecology and Conservation Biology, Ostfeld, R. S., Schlesinger, W. H., eds. 2011, Annals of the New York Academy of Sciences, Vol. 1223, pp. 39–57.Google Scholar
Johnson, D. B., Hallberg, K. B., Acid mine drainage remediation options: a review. Science of the Total Environment 2005, 338 (1), 314.Google Scholar
Wei, X. W. H., Viadero, R. C. Jr., Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. Science of the Total Environment 2011, 409, 941948.Google Scholar
US Fish and Wildlife Service, Acid Mine Drainage and Effects on Fish Health and Ecology: A Review. US Fish and Wildlife Service: 2008.Google Scholar
US Environmental Protection Agency, The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. US Environmental Protection Agency: 2009, EPA/600/R-09/138F, 2011.Google Scholar
US Environmental Protection Agency. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. US Environmental Protection Agency: 2009.Google Scholar
Schnoor, J. L., Mountaintop mining. Environmental Science & Technology 2010, 44 (23), 87948794.Google Scholar
Phillips, J. D., Impacts of surface mine valley fills on headwater floods in eastern Kentucky. Environmental Geology 2004, 45 (3), 367380.Google Scholar
Wickham, J. D., Riitters, K. H., Wade, T. G., Coan, M., Homer, C., The effect of Appalachian mountaintop mining on interior forest. Landscape Ecology 2007, 22 (2), 179187.Google Scholar
Palmer, M. A., Bernhardt, E. S., Schlesinger, W. H., Eshleman, K. N., Foufoula-Georgiou, E., Hendryx, M. S., Lemly, A. D., Likens, G. E., Loucks, O. L., Power, M. E., White, P. S., Wilcock, P. R., Mountaintop mining consequences. Science 2010, 327 (5962), 148149.Google Scholar
Pond, G. J., Passmore, M. E., Borsuk, F. A., Reynolds, L., Rose, C. J., Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 2008, 27 (3), 717737.Google Scholar
Fulk, F., Autrey, B., Hutchens, J., Gerritsen, J., Burton, J., Cresswell, C., Jessup, B., Ecological Assessment of Streams in the Coal Mining Region of West Virginia using Data Collected by US EPA and Environmental Consulting Firms. National Exposure Research Laboratory, US EPA: 2003.Google Scholar
Hartman, K. J., Kaller, M. D., Howell, J. W., Sweka, J. A., How much do valley fills influence headwater streams? Hydrobiologia 2005, 532, 91102.Google Scholar
Pond, G. J., Patterns of ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 2010, 641 (1), 185201.Google Scholar
Gilbert, N., Environment mountaintop mining plans close to defeat. Nature 2010, 467 (7319), 1021.Google Scholar
Dittman, E. K., Buchwalter, D. B., Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging. Environmental Science & Technology 2010, 44 (23), 91829188.Google Scholar
Pericak, A. A., Thomas, C. J., Kroodsma, D. A., Wasson, M. F., Ross, M. R. V., Clinton, N. E., Campagna, D. J., Franklin, Y., Bernhardt, E. S., Amos, J. F., Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 2018, 13 (7), 15.Google Scholar
US Environmental Protection Agency, Improving EPA review of Applachian surface coal mining operation under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Excecutive Order, April 1, 2010, 2010.Google Scholar
Herlihy, A. T., Kaufmann, P. R., Mitch, M. E., Brown, D. D., Regional estimates of acid mine drainage impact on streams in the mid-Atlantic and Southeastern United States. Water, Air, and Soil Pollution 1990, 50, 91107.Google Scholar
Das, A., Patel, S. S., Kumar, R., Krishna, K., Dutta, S., Saha, M. C., Sengupta, S., Guha, D., Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios. Chemosphere 2018, 197, 152164.Google Scholar
Neogi, B., Singh, A. K., Pathak, D. D., Chaturvedi, A., Hydrogeochemistry of coal mine water of North Karanpura coalfields, India: implication for solute acquisition processes, dissolved fluxes and water quality assessment. Environmental Earth Sciences 2017, 76 (14), 489.Google Scholar
Sahoo, P. K., Tripathy, S., Panigrahi, M. K., Equeenuddin, S. M., Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bulletin of Engineering Geology and the Environment 2017, 76 (2), 537552.Google Scholar
Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., Kurakalva, R. M., Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba Coalfield, Central India. Environmental Earth Sciences 2017, 76 (16), 566.Google Scholar
Tiwari, A. K., De Maio, M., Assessment of sulphate and iron contamination and seasonal variations in the water resources of a Damodar Valley coalfield, India: a case study. Bulletin of Environmental Contamination and Toxicology 2018, 100 (2), 271279.Google Scholar
Sahoo, P. K., Tripathy, S., Panigrahi, M. K., Equeenuddin, S. M., Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India: implication for acid and metal generation. Journal of Geochemical Exploration 2014, 145, 135147.Google Scholar
Li, X. X., Wu, P., Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China. Environmental Science and Pollution Research 2017, 24 (25), 2054020555.Google Scholar
Zhao, Q., Guo, F., Zhang, Y., Ma, S., Jia, X., Meng, W., How sulfate-rich mine drainage affected aquatic ecosystem degradation in northeastern China, and potential ecological risk. Science of the Total Environment 2017, 609, 10931102.Google Scholar
Growitz, D. J., Reed, . L.A, Beard, M. M. Reconnaissance of Mine Drainage in the Coal Fields of Eastern Pennsylvanian. US Geological Survey: 1985.Google Scholar
Esri, Topographic Map Which Includes Boundaries, Cities, Water Features, Physiographic Features, Parks, Landmarks, Transportation, and Buildings. www.arcgis.com/home/item.html?id=a1dc28de08e6447c8d14085fa15012e1.Google Scholar
Qin, Y., Curmi, E., Kopec, G. M., Allwood, J. M., Richards, K. S., China’s energy–water nexus – assessment of the energy sector’s compliance with the “3 Red Lines” industrial water policy. Energy Policy 2015, 82, 131143.Google Scholar
Pan, S.-Y., Snyder, S. W., Packman, A. I., Lin, Y. J., Chiang, P.-C., Cooling water use in thermoelectric power generation and its associated challenges for addressing water–energy nexus. Water–Energy Nexus 2018, 1 (1), 2641.Google Scholar
Liao, X., Hall, J. W., Drivers of water use in China’s electric power sector from 2000 to 2015. Environmental Research Letters 2018, 13 (9), 094010.Google Scholar
Kondash, A. J., Patino-Echeverri, D., Vengosh, A., Quantification of the water-use reduction associated with the transition from coal to natural gas in the US electricity sector. Environmental Research Letters 2019, 14 (12).Google Scholar
Zhang, C., Zhong, L., Fu, X., Wang, J., Wu, Z., Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory. Environmental Science & Technology 2016, 50 (4), 16421652.Google Scholar
Srinivasan, S., Kholod, N., Chaturvedi, V., Ghosh, P. P., Mathur, R., Clarke, L., Evans, M., Hejazi, M., Kanudia, A., Koti, P. N., Liu, B., Parikh, K. S., Ali, M. S., Sharma, K., Water for electricity in India: a multi-model study of future challenges and linkages to climate change mitigation. Applied Energy 2018, 210, 673684.Google Scholar
World Resources Institute, 40% of India’s Thermal Power Plants Are in Water-Scarce Areas, Threatening Shutdowns. www.wri.org/blog/2018/01/40-indias-thermal-power-plants-are-water-scarce-areas-threatening-shutdowns.Google Scholar
US Department of Energy, The Water–Energy Nexus: Challenges and Opportunities. US Department of Energy: 2014, www.energy.gov/articles/water-energy-nexus-challenges-and-opportunities.Google Scholar
Raptis, C. E., Boucher, J. M., Pfister, S., Assessing the environmental impacts of freshwater thermal pollution from global power generation in LCA. Science of the Total Environment 2017, 580, 10141026.Google Scholar
Raptis, C. E., Pfister, S., Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy 2016, 97, 4657.Google Scholar
Vallero, D. A., Thermal pollution. In Waste (Second Edition), Letcher, T. M., Vallero, D. A., eds. Academic Press: 2019, pp. 381404.Google Scholar
Langford, T., Ecological Effects of Thermal Discharges. Elsevier: 1990.Google Scholar
Verones, F., Hanafiah, M. M., Pfister, S., Huijbregts, M. A. J., Pelletier, G. J., Koehler, A., Characterization factors for thermal pollution in freshwater aquatic environments. Environmental Science & Technology 2010, 44 (24), 93649369.Google Scholar
Raptis, C. E., van Vliet, M. T. H., Pfister, S., Global thermal pollution of rivers from thermoelectric power plants. Environmental Research Letters 2016, 11 (10), 104011.Google Scholar
American Coal Ash Association, Production and Use of Coal Combustion Products in the US www.acaa-usa.org/Portals/9/Files/PDFs/ReferenceLibrary/ARTBA-final-forecast.compressed.pdf.Google Scholar
US Environmental Protection Agency, US Coal Ash Basics. www.epa.gov/coalash/coal-ash-basics.Google Scholar
Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q., A comprehensive review on the applications of coal fly ash. Earth-Science Reviews 2015, 141, 105121.Google Scholar
Gollakota, A. R. K., Volli, V., Shu, C.-M., Progressive utilisation prospects of coal fly ash: a review. Science of the Total Environment 2019, 672, 951989.Google Scholar
Harris, D., Heidrich, C., Feuerborn, J., Global aspects on Coal Combustion Products. www.coaltrans.com/insights/article/global-aspects-on-coal-combustion-products.Google Scholar
Ma, S.-H., Xu, M.-D., Qiqige, , Wang, X-H., Zhou, X, Challenges and developments in the utilization of fly ash in China. International Journal of Environmental Science and Development 2017, 8, 781785.Google Scholar
Luo, Y., Wu, Y., Ma, S., Zheng, S., Zhang, Y., Chu, P. K., Utilization of coal fly ash in China: a mini-review on challenges and future directions. Environmental Science and Pollution Research 2020, 28, 18727–18740.Google Scholar
Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., A review on the applications of coal combustion products in China. International Geology Review 2018, 60 (5–6), 671716.Google Scholar
US Environmental Protection Agency, Disposal of Coal Combustion Residuals from Electric Utilities Rulemakings. www.epa.gov/coalash/coal-ash-rule.Google Scholar
Clarke, L. B., The fate of trace elements during coal combustion and gasification: an overview. Fuel 1993, 72 (6), 731736.Google Scholar
Meij, R., The fate of trace elements at coal-fired power plants. Fuel 1993, 72, 718.Google Scholar
Meij, R., te Winkel, B. H., Trace elements in world steam coal and their behaviour in Dutch coal-fired power stations: a review. International Journal of Coal Geology 2009, 77, 289293.Google Scholar
Noda, N., Ito, S., The release and behavior of mercury, selenium, and boron in coal combustion. Powder Technology 2008, 180 (1–2), 227231.Google Scholar
Noda, N., Ito, S., Nunome, Y., Ueki, Y., Yoshiie, R., Naruse, I., Volatilization characteristics of boron compounds during coal combustion. Proceedings of the Combustion Institute 2013, 34 (2), 28312838.Google Scholar
Goodarzi, F., Swaine, D. J., Behavior of boron in coal during natural and industrial combustion processes. Energy Sources 1993, 15 (4), 609622.Google Scholar
Kashiwakura, S., Takahashi, T., Nagasaka, T., Vaporization behavior of boron from standard coals in the early stage of combustion. Fuel 2011, 90, 14081415.Google Scholar
Swaine, D. J., Trace elements in coal and their dispersal during combustion. Fuel Processing Technology 1994, 39, 121137.Google Scholar
Lauer, N. E., Hower, J. C., Hsu-Kim, H., Taggart, R. K., Vengosh, A., Naturally occurring radioactive materials in coals and coal combustion residuals in the United States. Environmental Science & Technology 2015, 49 (18), 1122711233.Google Scholar
Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Deonarine, A., Bergin, M., Kravchenko, J., Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environmental Science & Technology 2009, 43 (16), 63266333.Google Scholar
Ruhl, L. S., Dwyer, G. S., Hsu-Kim, H., Hower, J. C., Vengosh, A., Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers. Environmental Science & Technology 2014, 48 (24), 1479014798.Google Scholar
Schwartz, G. E., Hower, J. C., Phillips, A. L., Rivera, N., Vengosh, A., Hsu-Kim, H., Ranking coal ash materials for their potential to leach arsenic and selenium: relative importance of ash chemistry and site biogeochemistry. Environmental Engineering Science 2018, 35 (7), 728738.Google Scholar
Schwartz, G. E., Redfern, L. K., Ikuma, K., Gunsch, C. K., Ruhl, L. S., Vengosh, A., Hsu-Kim, H., Impacts of coal ash on methylmercury production and the methylating microbial community in anaerobic sediment slurries. Environmental Science-Processes & Impacts 2016, 18 (11), 14271439.Google Scholar
Schwartz, G. E., Rivera, N., Lee, S.-W., Harrington, J. M., Hower, J. C., Levine, K. E., Vengosh, A., Hsu-Kim, H., Leaching potential and redox transformations of arsenic and selenium in sediment microcosms with fly ash. Applied Geochemistry 2016, 67, 177185.Google Scholar
Vengosh, A., Cowan, E. A., Coyte, R. M., Kondash, A. J., Wang, Z., Brandt, J. E., Dwyer, G. S., Evidence for unmonitored coal ash spills in Sutton Lake, North Carolina: Implications for contamination of lake ecosystems. The Science of the Total Environment 2019, 686, 10901103.Google Scholar
Izquierdo, M. Q. X., Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology 2012, 94, 5466.Google Scholar
Hassett, D. J. P.-H. D. F., Heebink, L. V., Leaching of CCBs: observations from over 25 years of research. Fuel 2005, 84 , 13781383.Google Scholar
Kosson, D. S. F., Kariher, P., Turner, L. H., Delapp, R., Seignette, P. Characterization of Coal Combustion Residues from Electric Utilities – Leaching and Characterization Data. US Environmental Protection Agency, EPA/600/R-09/151: 2009.Google Scholar
Thorneloe, S. A., Kosson, D. S., Sanchez, F., Garrabrants, A. C., Helms, G., Evaluating the fate of metals in air pollution control residues from coal-fired power plants. Environmental Science & Technology 2010, 44 (19), 73517356.Google Scholar
Kosson, D. S., Garrabrants, A. C., DeLapp, R., van der Sloot, H. A., pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash. Chemosphere 2014, 103, 140147.Google Scholar
Kosson, D. S., van der Sloot, H. A., Sanchez, F., Garrabrants, A. C., An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environment Science and Technology 2002, 19, 159204.Google Scholar
Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Deonarine, A., Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. Environmental Science & Technology 2010, 44 (24), 92729278.Google Scholar
Bartov, G., Deonarine, A., Johnson, T. M., Ruhl, L., Vengosh, A., Hsu-Kim, H., Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source apportionment using mercury stable isotopes. Environmental Science & Technology 2013, 47 (4), 20922099.Google Scholar
Deonarine, A., Bartov, G., Johnson, T. M., Ruhl, L., Vengosh, A., Hsu-Kim, H., Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments. Environmental Science & Technology 2013, 47 (4), 21002108.Google Scholar
Liu, Y.-T., Chen, T.-Y., Mackebee, W. G., Ruhl, L., Vengosh, A., Hsu-kim, H., Selenium speciation in coal ash spilled at the Tennessee Valley Authority Kingston site. Environmental Science & Technology 2013, 47 (24), 1400114009.Google Scholar
Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Schwartz, G., Romanski, A., Smith, S. D., The impact of coal combustion residue effluent on water resources: a North Carolina example. Environmental Science & Technology 2012, 46 (21), 1222612233.Google Scholar
Harkness, J. S., Sulkin, B., Vengosh, A., Evidence for coal ash ponds leaking in the southeastern United States. Environmental Science & Technology 2016, 50 (12), 65836592.Google Scholar
Environmental Integrity Project, Coal’s Poisonous Legacy Groundwater Contaminated by Coal Ash across the U.S. Environmental Integrity Project: 2019, https://environmentalintegrity.org/wp-content/uploads/2019/03/National-Coal-Ash-Report-Revised-7.11.19.pdf.Google Scholar
Ailun, Y., Hanhua, Z., Kang, R., Miaohan, S., Xingmin, Z., Hongyuan, T., Xu, H., Fei, L. The True Cost of Coal – An Investigation into Coal Ash in China, Greenpeace: 2010, www.greenpeace.org/usa/research/dow-inspection-report/.Google Scholar
North Carolina Department of Environmental Quality, Well Test Information for Residents near Duke Energy Coal Ash Impoundments. https://deq.nc.gov/about/divisions/water-resources/water-resources-hot-topics/dwr-coal-ash-regulation/well-test-information-for-residents-near-duke-energy-coal-ash-impoundments.Google Scholar
Vengosh, A., Coyte, R., Karr, J., Harkness, J. S., Kondash, A. J., Ruhl, L. S., Merola, R. B., Dywer, G. S., Origin of hexavalent chromium in drinking water wells from the Piedmont aquifers of North Carolina. Environmental Science & Technology Letters 2016, 3 (12), 409414.Google Scholar
Coyte, R. M., McKinley, K. L., Jiang, S., Karr, J., Dwyer, G. S., Keyworth, A. J., Davis, C. C., Kondash, A. J., Vengosh, A., Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Science of the Total Environment 2020, 711, 135135.Google Scholar
Coyte, R. M., Vengosh, A., Factors controlling the risks of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium, and uranium in groundwater from the Eastern United States. Environmental Science & Technology 2020, 54 (7), 43674375.Google Scholar
Pagenkopf, G. K., Connolly, J. M., Retention of boron by coal ash. Environmental Science & Technology 1982, 16 (9), 609613.Google Scholar
US Geological Survey, The National Coal Resources Data System (NCRDS). https://energy.usgs.gov/Tools/NationalCoalResourcesDataSystem.aspx.Google Scholar
Sakata, M., Natsumi, M., Tani, Y., Isotopic evidence of boron in precipitation originating from coal burning in Asian continent. Geochemical Journal 2010, 44 (2), 113123.Google Scholar
Takahashi, T., Kashiwakura, S., Kanehashi, K., Hayashi, S., Nagasaka, T., Analysis of atomic scale chemical environments of boron in coal by B-11 solid state NMR. Environmental Science & Technology 2011, 45 (3), 890895.Google Scholar
Williams, L. B., Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. Applied Geochemistry 2004, 19 (10), 16251636.Google Scholar
Chen, S., Gui, H., Isotopic characteristics of D, O-18, C-13(dic), O-18(dic), Sr-87/Sr-86 and their application in coal mine water: a case study. Water Practice and Technology 2017, 12 (1), 97103.Google Scholar
Qu, S., Wang, G., Shi, Z., Xu, Q., Guo, Y., Ma, L., Sheng, Y., Using stable isotopes (delta D, delta O-18, delta S-34 and Sr-87/Sr-86) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China. Hydrogeology Journal 2018, 26 (5), 14431453.Google Scholar
Hamel, B. L., Stewart, B. W., Kim, A. G., Tracing the interaction of acid mine drainage with coal utilization byproducts in a grouted mine: strontium isotope study of the inactive Omega Coal Mine, West Virginia (USA). Applied Geochemistry 2010, 25 (2), 212223.Google Scholar
Hurst, R. W., Davis, T. E., Strontium isotopes as tracers of airborne fly-ash from coal-fired power-plants. Environmental Geology 1981, 3 (6), 363367.Google Scholar
Hurst, R. W., Davis, T. E., Elseewi, A. A., Strontium isotopes as tracers of coal combustion residue in the environment. Engineering Geology 1991, 30 (1), 5977.Google Scholar
Mattigod, S. V., Rai, D., Fruchter, J. S., Strontium isotopic characterization of soils and coal ashes. Applied Geochemistry 1990, 5 (3), 361365.Google Scholar
Spivak-Birndorf, L. J., Stewart, B. W., Capo, R. C., Chapman, E. C., Schroeder, K. T., Brubaker, T. M., Strontium isotope study of coal utilization by-products interacting with environmental waters. Journal of Environmental Quality 2012, 41 (1), 144154.Google Scholar
Widory, D., Liu, X., Dong, S., Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmospheric Environment 2010, 44 (30), 36793687.Google Scholar
US Environmental Protection Agency, Technical Development Document for the Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category. US Environmental Protection Agency: 2015, www.epa.gov/sites/production/files/2015-10/documents/steam-electric-tdd_10-21-15.pdf.Google Scholar
US Environmental Protection Agency, National Recommended Water Quality Criteria – Aquatic Life Criteria Table. www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.Google Scholar
US Environmental Protection Agency, Aquatic Life Criterion – Selenium. www.epa.gov/wqc/aquatic-life-criterion-selenium.Google Scholar
Gingerich, D. B., Zhao, Y., Mauter, M. S., Environmentally significant shifts in trace element emissions from coal plants complying with the 1990 Clean Air Act Amendments. Energy Policy 2019, 132, 1206–1215.Google Scholar
US Environmental Protection Agency, Acid Rain and Related Programs: 15 Years of Results. US Environmental Protection Agency: 2010.Google Scholar
US Environmental Protection Agency, Technical Development Document for the Effluent Limitations Guidelinesand Standards for the Steam Electric Power Generating Point Source Category. US Environmental Protection Agency: 2015.Google Scholar
Gingerich, D. B., Grol, E., Mauter, M. S., Fundamental challenges and engineering opportunities in flue gas desulfurization wastewater treatment at coal fired power plants. Environmental Science-Water Research & Technology 2018, 4 (7), 909925.Google Scholar
Gingerich, D. B., Sun, X., Behrer, A. P., Azevedo, I. L., Mauter, M. S., Spatially resolved air–water emissions tradeoffs improve regulatory impact analyses for electricity generation. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (8), 18621867.Google Scholar
Sun, X., Gingerich, D. B., Azevedo, I. L., Mauter, M. S., Trace element mass flow rates from US coal fired power plants. Environmental Science & Technology 2019, 53 (10), 55855595.Google Scholar
US Environmental Protection Agency, Overview of the Cross-State Air Pollution Rule (CSAPR). www.epa.gov/csapr/overview-cross-state-air-pollution-rule-csapr.Google Scholar
US Environmental Protection Agency, National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam In Federal Register. US Environmental Protection Agency: 2012, Vol. EPA-HQ-OAR-2009-0234, EPA-HQ-OAR-2011-0044, FRL-9611-4.Google Scholar
US Environmental Protection Agency, Mercury and Air Toxics Standards (MATS). www.epa.gov/mats.Google Scholar
Young, D. S., Senior, S., Meinhardt, C., , S. Reducing Operating Costs and Risks of Hg Control with Fuel Additives Advancing Cleaner Energy (ADA): 2016.Google Scholar
Heebink, L. V., Pflughoeft-Hassett, D. F., Hassett, D. J., Effects of mercury emission control technologies using halogens on coal combustion product chemical properties. Journal of Environmental Monitoring 2010, 12 (3), 608613.Google Scholar
Liu, S.-H., Yan, N.-Q., Liu, Z.-R., Qu, Z., Wang, P., Chang, S.-G., Miller, C., Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. Environmental Science & Technology 2007, 41 (4), 14051412.Google Scholar
Qu, Z., Yan, N., Liu, P., Chi, Y., Jia, J., Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas. Environmental Science & Technology 2009, 43 (22), 86108615.Google Scholar
Rupp, E. C., Wilcox, J., Mercury chemistry of brominated activated carbons – packed-bed breakthrough experiments. Fuel 2014, 117, 351353.Google Scholar
Sasmaz, E., Kirchofer, A., Jew, A. D., Saha, A., Abram, D., Jaramillo, T. F., Wilcox, J., Mercury chemistry on brominated activated carbon. Fuel 2012, 99, 188196.Google Scholar
Wilcox, J., Okano, T., Ab initio-based mercury oxidation kinetics via bromine at postcombustion flue gas conditions. Energy & Fuels 2011, 25 (4), 13481356.Google Scholar
Zhou, Q., Duan, Y.-F., Hong, Y.-G., Zhu, C., She, M., Zhang, J., Wei, H.-Q., Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Processing Technology 2015, 134, 325332.Google Scholar
Wang, S., Zhang, Y., Gu, Y., Wang, J., Yu, X., Wang, T., Sun, Z., liu, Z., Romero, C. E., Pan, W.-p., Coupling of bromide and on-line mechanical modified fly ash for mercury removal at a 1000 MW coal-fired power plant. Fuel 2019, 247, 179186.Google Scholar
Zhang, Y., Zhang, Z., Liu, Z., Norris, P., Pan, W.-p., Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel 2017, 200, 427434.Google Scholar
Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., Lu, J., A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science 2019, 73, 2664.Google Scholar
Cadwallader, A., VanBriesen, J. M., Temporal and spatial changes in bromine incorporation into drinking water-disinfection by-products in Pennsylvania. Journal of Environmental Engineering 2019, 145 (3).Google Scholar
Good, K. D., VanBriesen, J. M., Current and potential future bromide loads from coal-fired power plants in the Allegheny River Basin and their effects on downstream concentrations. Environmental Science & Technology 2016, 50 (17), 90789088.Google Scholar
Good, K. D., VanBriesen, J. M., Power plant bromide discharges and downstream drinking water systems in Pennsylvania. Environmental Science & Technology 2017, 51 (20), 1182911838.Google Scholar
Good, K. D., VanBriesen, J. M., Coal-fired power plant wet flue gas desulfurization bromide discharges to US watersheds and their contributions to drinking water sources. Environmental Science & Technology 2019, 53 (1), 213223.Google Scholar
US Environmental Protection Agency, Steam Electric Power Generating Effluent Guidelines – 2015 Final Rule. www.epa.gov/eg/steam-electric-power-generating-effluent-guidelines-2015-final-rule (40 CFR Part 423).Google Scholar
Tabuchi, H. Republicans move to block rule on coal mining near streams. www.nytimes.com/2017/02/02/business/energy-environment/senate-coal-regulations.html.Google Scholar
Eilperin, J. D. B., Muyskens, J. Trump rolled back more than 125 environmental safeguards. Here’s how. www.washingtonpost.com/graphics/2020/climate-environment/trump-climate-environment-protections/.Google Scholar
Verbong, G., Loorbach, D, Governing the Energy Transition: Reality, Illusion or Necessity? Routledge: 2012.Google Scholar
Van de Graaf, T., , Sovacool, B. K., Ghosh, A., Kern, F., Klare, M. T., States, markets, and institutions: integrating international political economy and global energy politics. In The Palgrave Handbook of the International Political Economy of Energy, Van de Graaf, T., Sovacool, B. K., Ghosh, A., Kern, F., Klare, M. T., eds. Springer Nature: 2016, pp. 334.Google Scholar
Skovgaard, J., van Asselt, H., The Politics of Fossil Fuel Subsidies and Their Reform. Cambridge University Press: 2018.Google Scholar
US Energy Information Administration (EIA), Power Sector Coal Demand Has Fallen in Nearly Every State since 2007. www.eia.gov/todayinenergy/detail.php?id=26012.Google Scholar
Institute for Energy Economics and Financial Analysis, April is Shaping Up to be Momentous in Transition from Coal to Renewables. https://ieefa.org/ieefa-u-s-april-is-shaping-up-to-be-momentous-in-transition-from-coal-to-renewables/.Google Scholar
Appunn, K. Germany Bids Farewell to Domestic Hard Coal Mining. www.cleanenergywire.org/news/germany-bids-farewell-domestic-hard-coal-mining.Google Scholar
Whitley, S., van der Burg, L., Reforming fossil fuel subsidies: the art of the possible. In The Politics of Fossil Fuel Subsidies and Their Reform, Skovgaard, J., van Asselt, H., eds. Cambridge University Press: 2018.Google Scholar
Ebinger, C. K. India’s Energy and Climate Policy: Can India Meet the Challenges of Industrialization and Climate Change? Brookings: 2016.Google Scholar
US Energy Information Administration (EIA), India’s Coal Industry in Flux as Government Sets Ambitious Coal Production Targets. www.eia.gov/todayinenergy/detail.php?id=22652.Google Scholar
Bagirov, S., Oil of Zerbaijan: Revenues, Expernses, and Risks. Yeni Nesil Publishing House: 2007.Google Scholar
Jones Luong, P. J., Weinthal, E., Oil Is Not a Curse. Cambridge University Press: 2010.Google Scholar
UN Audiovisual Library of International Law, Permanent Sovereignty over Natural Resources General Assembly Resolution 1803 (XVII). https://legal.un.org/avl/ha/ga_1803/ga_1803.html.Google Scholar
Ross, M. L., The Oil Curse: How Petroleum Wealth Shapes the Development of Nations. Princeton University Press: 2012.Google Scholar
US Energy Information Administration (EIA), International Energy Statistics. www.eia.gov/beta/international/ (1/19/2019).Google Scholar
Mai-Duc, C. The 1969 Santa Barbara oil spill that changed oil and gas exploration forever. www.latimes.com/local/lanow/la-me-ln-santa-barbara-oil-spill-1969-20150520-htmlstory.html.Google Scholar
Leahy, S. Exxon Valdez changed the oil industry forever – but new threats emerge. www.nationalgeographic.com/environment/2019/03/oil-spills-30-years-after-exxon-valdez/.Google Scholar
Birkland, T. A., In the wake of the Exxon Valdez: how environmental disasters influence policy. Environment Science and Policy for Sustainable Development 1998, 40, 432.Google Scholar
Graham, B. R., Beinecke, W. K., Boesch, F., Garcia, D. F., Murray, T. D., Ulmer, C. A., , F., Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling. National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling: 2011.Google Scholar
Lyall, S., At BP, a History of Boldness and Costly Blunders. The New York Times: 2010.Google Scholar
Xavier Sala-i-Martin, X. Subramanian, A., Addressing the natural resource curse: an illustration from Nigeria. Journal of African Economies 2013, 22 (4), 570615.Google Scholar
Adebayo, B., Nigeria overtakes India in extreme poverty ranking. CNN, 2018, www.cnn.com/2018/06/26/africa/nigeria-overtakes-india-extreme-poverty-intl/index.html.Google Scholar
Mähler, A., An inescapable curse? Resource management, violent conflict, and peacebuilding in the Niger Delta. In High-Value Natural Resources and Post-Conflict Peacebuilding, Päivi Lujala, P., Rustad, S. A., eds. Taylor and Francis Group: 2012.Google Scholar
Nossiter, A. Far from Gulf, a spill scourge 5 decades old. www.nytimes.com/2010/06/17/world/africa/17nigeria.html?src=mv.Google Scholar
Andrews-Speed, P. China’s Energy Policymaking Processes and Their Consequences The National Bureau of Asian Research (NBR): 2014.Google Scholar
US Energy Information Administration (EIA), Key World Energy Statistics. US Energy Information Administration (EIA): 2019.Google Scholar
US Environmental Protection Agency, Types of Petroleum Oils. https://archive.epa.gov/emergencies/content/learning/web/html/oiltypes.html.Google Scholar
Bush, J. L., Helander, D. P., Empirical prediction of recovery rate in waterflooding depleted sands. Journal of Petroleum Technology 1968, 20, 933943.Google Scholar
Wu, M., Mintz, M., Wang, M., Arora, S. Consumptive Water Use in the Production of Ethanol and Petroleum Gasoline. Argonne National Laboratory, US Department of Energy: 2009, p 76.Google Scholar
Kondash, A. J., Albright, E., Vengosh, A., Quantity of flowback and produced waters from unconventional oil and gas exploration. Science of the Total Environment 2017, 574, 314321.Google Scholar
US Energy Information Administration (EIA), Crude Oil Production (USA). www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm.Google Scholar
US Geological Survey, Geological Survey National Produced Waters Geochemical Database v2.3. www.sciencebase.gov/catalog/item/59d25d63e4b05fe04cc235f9.Google Scholar
US Energy Information Administration (EIA), Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. US Energy Information Administration (EIA): 2013.Google Scholar
US Energy Information Administration (EIA), Maps: Oil and Gas Exploration, Resources, and Production. www.eia.gov/maps/maps.htm.Google Scholar
Wu, M., Mintz, M., Wang, M., Arora, S., Chiu, Y-W., Xu, H. Consumptive Water Use in the Production of Ethanol and Petroleum Gasoline – 2018 Update. Argonne National Laboratory: 2018.Google Scholar
Neville, K. J., Baka, J., Gamper-Rabindran, S., Bakker, K., Andreasson, S., Vengosh, A., Lin, A., Singh, J. N., Weinthal, E., Debating unconventional energy: social, political, and economic implications. Annual Review of Environment and Resources, 2017, 42, 241266.Google Scholar
Scanlon, B. R., Reedy, R. C., Nicot, J. P., Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environmental Science & Technology 2014, 48 (20), 1238612393.Google Scholar
Allen, E. W., Process water treatment in Canada’s oil sands industry: I. target pollutants and treatment objectives. Journal Environment Engineering Science 2008, 7, 123138.Google Scholar
Ali, B., Kumar, A., Development of life cycle water footprints for oil sands-based transportation fuel production. Energy 2017, 131, 4149.Google Scholar
Sun, P., Elgowainy, A., Wang, M., Han, J., Henderson, R. J., Estimation of US refinery water consumption and allocation to refinery products. Fuel 2018, 221, 542557.Google Scholar
Zara Khatib, Z., Verbeek, P., Water to value – produced water management for sustainable field development of mature and green fields. Journal of Petroleum Technology 2003, 55, 2628.Google Scholar
Veil, J. US Produced Water Volumes and Management . Groundwater Protection Council: 2015.Google Scholar
Clark, C. E., Veil, J. A. Produced Water Volumes and Management in the United States. Argonne National Laboratory: 2009.Google Scholar
Neff, J., Lee, K., DeBloi, E. M., Produced water: overview of composition, fates, and effects. In Produced Water: Environmental Risks and Advances in Mitigation Technologies, Lee, K., Neff, J., eds. Springer: 2011.Google Scholar
Veil, J. US Produced Water Volumes and Management Practices in 2012. Ground Water Protection Council: 2015.Google Scholar
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., Davies, R. J., Global review of human-induced earthquakes. Earth-Science Reviews 2018, 178, 438514.Google Scholar
Frohlich, C., Brunt, M., Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the MW4.8 20 October 2011 earthquake. Earth and Planetary Science Letters 2013, 379, 5663.Google Scholar
Roach, T., Oklahoma earthquakes and the price of oil. Energy Policy 2018, 121, 365373.Google Scholar
Torres, L., Yadav, O. P., Khan, E., A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment 2016, 539, 478493.Google Scholar
Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y., van der Baan, M., Kao, H., Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters 2016, 87 (3), 631647.Google Scholar
Rubinstein, J., Unconventional oil and gas and induced earthquakes. Abstracts of Papers of the American Chemical Society 2016, 251.Google Scholar
Gomez Alba, S., Vargas, C. A., Zang, A., Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitan (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International 2020, 220 (1), 335344.Google Scholar
Ogwari, P. O., DeShon, H. R., Hornbach, M. J., The Dallas-Fort Worth Airport earthquake sequence: seismicity beyond injection period. Journal of Geophysical Research-Solid Earth 2018, 123 (1), 553563.Google Scholar
Schimmel, M., Liu, W., Worrell, E., Facilitating sustainable geo-resources exploitation: a review of environmental and geological risks of fluid injection into hydrocarbon reservoirs. Earth-Science Reviews 2019, 194, 455471.Google Scholar
Stewart, F. L., Ingelson, A., Regulating energy innovation: US responses to hydraulic fracturing, wastewater injection and induced seismicity. Journal of Energy & Natural Resources Law 2017, 35 (2), 109146.Google Scholar
Wisen, J., Chesnaux, R., Wendling, G., Werring, J., Barbecot, F., Baudron, P., Assessing the potential of cross-contamination from oil and gas hydraulic fracturing: a case study in northeastern British Columbia, Canada. Journal of Environmental Management 2019, 246, 275282.Google Scholar
Elsworth, D., Spiers, C. J., Niemeijer, A. R., Understanding induced seismicity. Science 2016, 354 (6318), 13801381.Google Scholar
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., Elsworth, D., Seismicity triggered by fluid injection-induced aseismic slip. Science 2015, 348 (6240), 12241226.Google Scholar
Collins, A. G., Origin of oilfield waters. In Developments in Petroleum Science, Collins, A. G., ed. Elsevier: 1975, Vol. 1, pp. 193252.Google Scholar
Connolly, C. A., Walter, L. M., Baadsgaard, H., Longstaffe, F. J., Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. II. Isotope systematics and water mixing. Applied Geochemistry 1990, 5 (4), 397413.Google Scholar
Connolly, C. A., Walter, L. M., Baadsgaard, H., Longstaffe, F. J., Origin and evolution of formation waters, Alberta Basin, Western Canada sedimentary Basin. I. Chemistry. Applied Geochemistry 1990, 5 (4), 375395.Google Scholar
Egeberg, P. K., Aagaard, P., Origin and evolution of formation waters from oil fields on the Norwegian Shelf. Applied Geochemistry 1989, 4 (2), 131142.Google Scholar
Fontes, J. C., Matray, J. M., Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology 1993, 109 (1), 149175.Google Scholar
Kesler, S. E., Martini, A. M., Appold, M. S., Walter, L. M., huston, T. J., furman, F. C., Na-Cl-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: constraints on solute origin and migration paths. Geochimica et Cosmochimica Acta 1996, 60 (2), 225233.Google Scholar
Kharaka, Y. K., Geochemistry of oilfield waters. Earth-Science Reviews 1977, 13 (1), 7778.Google Scholar
McNutt, R. H., Frape, S. K., Dollar, P., A strontium, oxygen and hydrogen isotopic composition of brines, Michigan and Appalachian basins, Ontario and Michigan. Applied Geochemistry 1987, 2 (5), 495505.Google Scholar
Moran, J. E., Fehn, U., Hanor, J. S., Determination of source ages and migration patterns of brines from the US Gulf Coast Basin using 129I. Geochimica et Cosmochimica Acta 1995, 59 (24), 50555069.Google Scholar
Russell, C. W., Cowart, J. B., Russell, G. S., Strontium isotopes in brines and associated rocks from Cretaceous strata in the Mississippi Salt Dome Basin (southeastern Mississippi, U.S.A.). Chemical Geology 1988, 74 (1), 153171.Google Scholar
Spencer, R. J., Origin of CaCl brines in Devonian formations, Western Canada Sedimentary Basin. Applied Geochemistry 1987, 2 (4), 373384.Google Scholar
Surdam, R. C., MacGowan, D. B., Oilfield waters and sandstone diagenesis. Applied Geochemistry 1987, 2 (5), 613619.Google Scholar
Vengosh, A., Chivas, A. R., Starinsky, A., Kolodny, Y., Baozhen, Z., Pengxi, Z., Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chemical Geology 1995, 120 (1), 135154.Google Scholar
Wilson, T. P., Long, D. T., Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations. Applied Geochemistry 1993, 8 (1), 81100.Google Scholar
Bein, A., Dutton, A. R., Origin, distribution, and movement of brine in the Permian Basin (U.S.A.): a model for displacement of connate brine. GSA Bulletin 1993, 105, 695707.Google Scholar
Warner, N. R., Christie, C. A., Jackson, R. B., Vengosh, A., Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environmental Science & Technology 2013, 47 (20), 1184911857.Google Scholar
Warner, N. R., Darrah, T. H., Jackson, R. B., Millot, R., Kloppmann, W., Vengosh, A., New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environmental Science & Technology 2014, 48 (21), 1255212560.Google Scholar
Vengosh, A., Kondash, A., Harkness, J., Lauer, N., Warner, N., Darrah, T. H., The geochemistry of hydraulic fracturing fluids. In 15th Water–Rock Interaction International Symposium, Wri-15, Marques, J. M., Chambel, A., eds. Procedia Earth and Planetary Science: 2017, Vol. 17, pp. 21–24.Google Scholar
Rowan, E. L., Engle, M. A., Kraemer, T. F., Schroeder, K. T., Hammack, R. W., Doughten, M. W., Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania. Aapg Bulletin 2015, 99 (2), 181206.Google Scholar
Rowan, E. L. E. M. A., Kirby, C. S., Kraemer, T. F., Radium Content of Oil- and Gas-Field Produced Waters in the Northern Appalachian Basin (USA) – Summary and Discussion of Data. US Geological Survey: 2011.Google Scholar
Lauer, N. E., Harkness, J. S., Vengosh, A., Brine spills associated with unconventional oil development in North Dakota. Environmental Science & Technology 2016, 50 (10), 53895397.Google Scholar
Harkness, J. S., Darrah, T. H., Warner, N. R., Whyte, C. J., Moore, M. T., Millot, R., Kloppmann, W., Jackson, R. B., Vengosh, A., The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochimica et Cosmochimica Acta 2017, 208, 302334.Google Scholar
Harkness, J. S., Dwyer, G. S., Warner, N. R., Parker, K. M., Mitch, W. A., Vengosh, A., Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Environmental Science & Technology 2015, 49 (3), 19551963.Google Scholar
Haluszczak, L. O., Rose, A. W., Kump, L. R., Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Applied Geochemistry 2013, 28, 5561.Google Scholar
Barbot, E., Vidic, N. S., Gregory, K. B., Vidic, R. D., Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing. Environmental Science & Technology 2013, 47 (6), 25622569.Google Scholar
Stringfellow, W., Camarillo, M. K., Flowback versus first-flush: new information on the geochemistry of produced water from mandatory reporting. Environmental Science Processes & Impacts 2019, 21, 370383.Google Scholar
Collins, A. G., Geochemistry of Oilfield Waters. Elsevier: 1975.Google Scholar
Veil, J. A., Puder, M. G., Elcock, D., Redweik, R. J., Jr. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane. Argonne National Lab., US Department of Energy: 2004.Google Scholar
Amusan, F. O., The environmental impact of oilfield formation water on a freshwater stream in Nigeria. Journal of Applied Sciences and Environmental Management 2003, 7, 6166.Google Scholar
Varonka, M. S., Gallegos, T. J., Bates, A. L., Doolan, C., Orem, W. H., Organic compounds in produced waters from the Bakken Formation and Three Forks Formation in the Williston Basin, North Dakota. Heliyon 2020, 6 (3), e03590e03590.Google Scholar
Wang, X., Goual, L., Colberg, P. J. S., Characterization and treatment of dissolved organic matter from oilfield produced waters. Journal of Hazardous Materials 2012, 217218, 164170.Google Scholar
Ekins, P., Vanner, R., Firebrace, J. Management of Produced Water on Offshore Oil Installation: A Comparative Assessment Using Flow Analysis. Policy Studies Institute (PSI): 2005.Google Scholar
Bakke, T., Klungsøyr, J., Sanni, S., Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Reserach 2013, 92, 154169.Google Scholar
Chapman, E. C., Capo, R. C., Stewart, B. W., Kirby, C. S., Hammack, R. W., Schroeder, K. T., Edenborn, H. M., Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction. Environmental Science & Technology 2012, 46 (6), 35453553.Google Scholar
Neymark, L. A., Premo, W. R., Emsbo, P., Combined radiogenic (Sr-87/Sr-86, U-234/U-238) and stable (delta Sr-88) isotope systematics as tracers of anthropogenic groundwater contamination within the Williston Basin, USA. Applied Geochemistry 2018, 96, 1123.Google Scholar
Shrestha, N., Chilkoor, G., Wilder, J., Gadhamshetty, V., Stone, J. J., Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken Shale. Water Research 2017, 108, 124.Google Scholar
Thyne, G., Brady, P., Evaluation of formation water chemistry and scale prediction: Bakken Shale. Applied Geochemistry 2016, 75, 107113.Google Scholar
Wang, H., Lu, L., Chen, X., Bian, Y., Ren, Z. J., Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Research 2019, 164, 114942.Google Scholar
McMahon, P. B., Kulongoski, J. T., Vengosh, A., Cozzarelli, I. M., Landon, M. K., Kharaka, Y. K., Gillespie, J. M., Davis, T. A., Regional patterns in the geochemistry of oil-field water, southern San Joaquin Valley, California, USA. Applied Geochemistry 2018, 98, 127140.Google Scholar
Barry, P. H., Kulongoski, J. T., Landon, M. K., Tyne, R. L., Gillespie, J. M., Stephens, M. J., Hillegonds, D. J., Byrne, D. J., Ballentine, C. J., Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases. Earth and Planetary Science Letters 2018, 496, 5767.Google Scholar
Everett, R., Gillespie, J., Stephens, M. J., Shimabukuro, D. H., Ducart, A., Gans, K., Metzger, L., Geochemical and Geophysical Data for Wells in the Fruitvale and Rosedale Ranch Oil and Gas Fields, Kern County, California, USA. United States Geological Survey: 2018.Google Scholar
Wright, M. T., McMahon, P. B., Landon, M. K., Kulongoski, J. T., Groundwater quality of a public supply aquifer in proximity to oil development, Fruitvale oil field, Bakersfield, California. Applied Geochemistry 2019, 106, 8295.Google Scholar
Parker, K. M., Zeng, T., Harkness, J., Vengosh, A., Mitch, W. A., Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies. Environmental Science & Technology 2014, 48 (19), 1116111169.Google Scholar
Engle, M. A., Rowan, E. L., Geochemical evolution of produced waters from hydraulic fracturing of the Marcellus Shale, northern Appalachian Basin: a multivariate compositional data analysis approach. International Journal of Coal Geology 2014, 126, 4556.Google Scholar
Dresel, E. P., Rose, A. W. Chemistry and Origin of Oil and Gas Well Brines in Western Pennsylvania. Pennsylvania Geological Survery: 2010.Google Scholar
Ni, Y. Y., Zou, C. N., Cui, H. Y., Li, J., Lauer, N. E., Harkness, J. S., Kondash, A. J., Coyte, R. M., Dwyer, G. S., Liu, D., Dong, D. Z., Liao, F. R., Vengosh, A., Origin of flowback and produced waters from Sichuan Basin, China. Environmental Science & Technology 2018, 52 (24), 1451914527.Google Scholar
Macpherson, G. L., Lithium in fluids from Paleozoic-aged reservoirs, Appalachian Plateau region, USA. Applied Geochemistry 2015, 60, 7277.Google Scholar
Macpherson, G. L., Capo, R. C., Stewart, B. W., Phan, T. T., Schroeder, K., Hammack, R. W., Temperature-dependent Li isotope ratios in Appalachian Plateau and Gulf Coast Sedimentary Basin saline water. Geofluids 2014, 14 (4), 419429.Google Scholar
Pfister, S., Capo, R. C., Stewart, B. W., Macpherson, G. L., Phan, T. T., Gardiner, J. B., Diehl, J. R., Lopano, C. L., Hakala, J. A., Geochemical and lithium isotope tracking of dissolved solid sources in Permian Basin carbonate reservoir and overlying aquifer waters at an enhanced oil recovery site, northwest Texas, USA. Applied Geochemistry 2017, 87, 122135.Google Scholar
Köster, M. H., Williams, L. B., Kudejova, P., Gilg, H. A., The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits. Chemical Geology 2019, 510, 166187.Google Scholar
Williams, L. B., Crawford Elliott, W., Hervig, R. L., Tracing hydrocarbons in gas shale using lithium and boron isotopes: Denver Basin USA, Wattenberg Gas Field. Chemical Geology 2015, 417, 404413.Google Scholar
Williams, L. B., Hervig, R. L., Lithium and boron isotopes in illite-smectite: the importance of crystal size. Geochimica et Cosmochimica Acta 2005, 69 (24), 57055716.Google Scholar
Williams, L. B., Hervig, R. L., Hutcheon, I., Boron isotope geochemistry during diagenesis. Part II. Applications to organic-rich sediments. Geochimica et Cosmochimica Acta 2001, 65 (11), 17831794.Google Scholar
Williams, L. B., Hervig, R. L., Wieser, M. E., Hutcheon, I., The influence of organic matter on the boron isotope geochemistry of the Gulf Coast Sedimentary Basin, USA. Chemical Geology 2001, 174 (4), 445461.Google Scholar
Al-Masri, M. S., Spatial and monthly variations of radium isotopes in produced water during oil production. Applied Radiation and Isotopes 2006, 64 (5), 615623.CrossRefGoogle ScholarPubMed
Kraemer, T. F., Reid, D. F., The occurrence and behavior of radium in saline formation water of the US Gulf Coast region. Chemical Geology 1984, 46 (2), 153174.Google Scholar
Mathews, M., Gotkowitz, M., Ginder-Vogel, M., Effect of geochemical conditions on radium mobility in discrete intervals within the Midwestern Cambrian-Ordovician aquifer system. Applied Geochemistry 2018, 97, 238246.Google Scholar
Omar, M., Ali, H. M., Abu, M. P., Kontol, K. M., Ahmad, Z., Ahmad, S. H. S. S., Sulaiman, I., Hamzah, R., Distribution of radium in oil and gas industry wastes from Malaysia. Applied Radiation and Isotopes 2004, 60 (5), 779782.Google Scholar
Stackelberg, P. E., Szabo, Z., Jurgens, B. C., Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA. Applied Geochemistry 2018, 89, 3448.Google Scholar
Lauer, N. E., Warner, N. R., Vengosh, A., Sources of radium accumulation in stream sediments near disposal sites in Pennsylvania: implications for disposal of conventional oil and gas wastewater. Environmental Science & Technology 2018, 52 (3), 955962.Google Scholar
Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., Andjelkovich, D. A., Leber, P., A critical review of the literature on hydrogen sulfide toxicity. CRC Critical Reviews in Toxicology 1984, 13 (1), 2597.CrossRefGoogle ScholarPubMed
Lauer, N., Vengosh, A., Age dating oil and gas wastewater spills using radium isotopes and their decay products in impacted soil and sediment. Environmental Science & Technology Letters 2016, 3 (5), 205209.Google Scholar
Engle, M. A., Reyes, F. R., Varonka, M. S., Orem, W. H., Ma, L., Ianno, A. J., Schell, T. M., Xu, P., Carroll, K. C., Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chemical Geology 2016, 425, 7692.CrossRefGoogle Scholar
McDevitt, B., McLaughlin, M., Cravotta, C. A., III, Ajemigbitse, M. A., Van Sice, K. J., Blotevogel, J., Borch, T., Warner, N. R., Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management. Environmental Science-Processes & Impacts 2019, 21 (2), 324338.Google Scholar
Tasker, T. L., Burgos, W. D., Ajemigbitse, M. A., Lauer, N. E., Gusa, A. V., Kuatbek, M., May, D., Landis, J. D., Alessi, D. S., Johnsen, A. M., Kaste, J. M., Headrick, K. L., Wilke, F. D. H., McNeal, M., Engle, M., Jubb, A. M., Vidic, R. D., Vengosh, A., Warner, N. R., Accuracy of methods for reporting inorganic element concentrations and radioactivity in oil and gas wastewaters from the Appalachian Basin, US based on an inter-laboratory comparison. Environmental Science-Processes & Impacts 2019, 21 (2), 224241.Google Scholar
Tasker, T. L., Burgos, W. D., Piotrowski, P., Castillo-Meza, L., Blewett, T. A., Ganow, K. B., Stallworth, A., Delompre, P. L. M., Goss, G. G., Fowler, L. B., Vanden Heuvel, J. P., Dorman, F., Warner, N. R., Environmental and human health impacts of spreading oil and gas wastewater on roads. Environmental Science & Technology 2018, 52 (12), 70817091.Google Scholar
Van Sice, K., Cravotta, C. A., III, McDevitt, B., Tasker, T. L., Landis, J. D., Puhr, J., Warner, N. R., Radium attenuation and mobilization in stream sediments following oil and gas wastewater disposal in western Pennsylvania. Applied Geochemistry 2018, 98, 393403.Google Scholar
Babatunde, B. B., Sikoki, F. D., Avwiri, G. O., Chad-Umoreh, Y. E., Review of the status of radioactivity profile in the oil and gas producing areas of the Niger Delta region of Nigeria. Journal of Environmental Radioactivity 2019, 202, 6673.Google Scholar
Moskovchenko, D. V., Babushkin, A. G., Artamonova, G. N., Surface water quality assessment of the Vatinsky Egan River catchment, west Siberia. Environmental Monitoring and Assessment 2009, 148, 359368.Google Scholar
Moquet, J.-S., Maurice, L., Crave, A., Viers, J., Arevalo, N., Lagane, C., Lavado-Casimiro, W., Guyot, J.-L., Cl and Na fluxes in an Andean Foreland Basin of the Peruvian Amazon: an anthropogenic impact evidence. Aquatic Geochemistry 2014, 20 (6), 613637.Google Scholar
An, Y.-J., Kampbell, D. H., Jeong, S.-W., Jewell, K. P., Masoner, J. R., Impact of geochemical stressors on shallow groundwater quality. Science of the Total Environment 2005, 348 (1), 257266.Google Scholar
Ma, J., Pan, F., He, J., Chen, L., Fu, S., Jia, B., Petroleum pollution and evolution of water quality in the Malian river basin of the Longdong Loess Plateau, northwestern China. Environmental Earth Science 2011, 66, 17691782.Google Scholar
Kang, M., Kanno, C. M., Reid, M. C., Zhang, X., Mauzerall, D. L., Celia, M. A., Chen, Y., Onstott, T. C., Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. Proceedings of the National Academy of Sciences 2014, 111 (51), 1817318177.Google Scholar
King, G. E., Valencia, R. L., Environmental risk and well integrity of plugged and abandoned wells. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: 2014.Google Scholar
Harrison, S. S., Evaluating system for ground‐water contamination hazards due to gas‐well drilling on the glaciated Appalachian Plateau. GroundWater 1983, 21, 689700.Google Scholar
Harrison, S. S., Contamination of aquifers by overpressuring the annulus of oil and gas wells. GroundWater 1985, 23, 317324.Google Scholar
Thyne, T. Review of Phase II Hydrogeologic Study (Prepared for Garfield County). 2008, https://s3.amazonaws.com/propublica/assets/methane/thyne_review.pdf.Google Scholar
Warner, N. R., Jackson, R. B., Darrah, T. H., Osborn, S. G., Down, A., Zhao, K., White, A., Vengosh, A., Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences 2012, 109 (30), 1196111966.Google Scholar
Darrah, T. H., Vengosh, A., Jackson, R. B., Warner, N. R., Poreda, R. J., Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett shales. Proceedings of the National Academy of Sciences 2014, 111 (39), 1407614081.CrossRefGoogle ScholarPubMed
Eger, C. K., Vargo, J. S., Prevention: ground water contamination at the Martha Oil Field, Lawrence and Johnson counties, Kentucky. In Environmental Concerns in the Petroleum Industry, Testa, M., ed. AAPG: 1989.Google Scholar
McIntosh, J. C., Ferguson, G., Conventional oil – the forgotten part of the water–energy nexus. Groundwater 2019, 57, 669677.Google Scholar
US General Accounting Office (GAO), Drinking Water: Safeguards Are Not Preventing Contamination from Injected Oil and Gas Wastes. US General Accounting Office: 1989.Google Scholar
North Dakota State Government, North Dakota General Statistics. www.dmr.nd.gov/oilgas/stats/statisticsvw.asp.Google Scholar
Haghshenas, A., Nasr-El-Din, H. A., Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. Journal of Natural Gas Science and Engineering 2014, 21, 316325.Google Scholar
Chang, H., Liu, B.,Yang, B., Yang, X., Guo, C., He, Q., Liang, S., Chen, S., Yang, P., An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water. Separation and Purification Technology 2019, 21, 310321.Google Scholar
Liang, T., Shao, L., Yao, E., Zuo, J., Liu, X., Zhang, B., Zhou, F., Study on fluid–rock interaction and reuse of flowback fluid for gel fracturing in desert areas. Geofluids 2018, 8948961.Google Scholar
Sun, Y., Wang, D., Tsang, D. C. W., Wang, L., Ok, Y. S., Feng, Y., A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environmental International 2019, 125, 452469.Google Scholar
Esmaeilirad, N., Terry, C., Kennedy, H., Prior, A., Carlson, K, Recycling fracturing flowback water for use in hydraulic fracturing: influence of organic matter on stability of carboxyl-methyl-cellulose-based fracturing fluids. SPE Journal 2016, 21, SPE-179723-PA.Google Scholar
Menefee, A. H., Ellis, B. R., Wastewater management strategies for sustained shale gas production. Environmental Research Letters 2020, 15 (2), 024001.CrossRefGoogle Scholar
Liu, D. Li, J., Zou, C., Cui, H., Ni, Y., Liu, J., Wu, W., Zhang, L., Coyte, R., Kondash, A. J., Vengosh, A., Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel 2020, 272, 117621.Google Scholar
Christian-Smith, J., Levy, M. C., Gleick, P. H., Maladaptation to drought: a case report from California, USA. Sustain Science 2015, 10, 491501.Google Scholar
Kondash, A. J., Redmon, J. H., Lambertini, E., Feinstein, L., Weinthal, E., Cabrales, L., Vengosh, A., The impact of using low-saline oilfield produced water for irrigation on water and soil quality in California. Science of the Total Environment 2020, 733, 139392.Google Scholar
Oetjen, K., Chan, K. E., Gulmark, K., Christensen, J. H., Blotevogel, J., Borch, T., Spear, J. R., Cath, T. Y., Higgins, C. P., Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of the Total Environment 2018, 619 –620, 654664.Google Scholar
Miller, H. T., Trivedi, P., Qiu, Y., Sedlacko, E. M., Higgins, C. P., Borch, T., Food crop irrigation with oilfield-produced water suppresses plant immune response. Environmental Science and Technology Letters 2019, 6, 656661.Google Scholar
Pica, N. E., Carlon, K., Steiner, J. J., Waskom, R., Produced water reuse for irrigation of non-food biofuel crops: effects on switchgrass and rapeseed germination, physiology and biomass yield. Industrial Crops and Products 2017, 100, 65−76.Google Scholar
Sedlacko, E. M., Jahn, C E., Heuberger, A. L., Sindt, N. M., Miller, H. M., Borch, T., Blaine, A. C., Cath, T. Y., Higgins, C. P., Potential for beneficial reuse of oil-and-gas-derived produced water in agriculture: physiological and morphological responses in spring wheat (triticum aestivum). Environ. Toxicology Chemistry 2019, 38, 17561769.Google Scholar
McLaughlin, M. C., Blotevogel, J., Watson, R. A., Schell, B., Blewett, T. A. Folkerts, E. J., Goss, G. G., Truong, L., Tanguay, R. L., Argueso, J. L., Borch, T., Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Science for Total Environment 2020, 715, 136944.Google Scholar
Shariq, L., Health risks associated with arsenic and cadmium uptake in wheat grain irrigated with simulated hydraulic fracturing flowback water. Journal Environtal Health 2019, 81, E1E9.Google Scholar
Boo, C., Khalil, Y. F., Elimelech, M., Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis. Journal of Membrane Science 2015, 473, 302309.Google Scholar
Chang, H., Li, T., Liu, B., Vidic, R. D., Elimelech, M., Crittenden, J. C., Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: a review. Desalination 2019, 455, 3457.Google Scholar
Shaffer, D. L., Arias Chavez, L. H., Ben-Sasson, M., Romero-Vargas Castrillón, S., Yip, N. Y., Elimelech, M., Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environmental Science & Technology 2013, 47 (17), 95699583.Google Scholar
Harkness, J. S., Warner, N. R., Ulrich, A., Millot, R., Kloppmann, W., Ahad, J. M. E., Savard, M. M., Gammon, P., Vengosh, A., Characterization of the boron, lithium, and strontium isotopic variations of oil sands process-affected water in Alberta, Canada. Applied Geochemistry 2018, 90, 5062.Google Scholar
Renault, S., Lait, C., Zwiazek, J. J., MacKinnon, M., Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environmental Pollution 1998, 102 (2), 177184.Google Scholar
Jones, D., Scarlett, A. G., West, C. E., Frank, R. A., Gieleciak, R., Hager, D., Pureveen, J., Tegelaar, E., Rowland, S. J., Elemental and spectroscopic characterization of fractions of an acidic extract of oil sands process water. Chemosphere 2013, 93 (9), 16551664.Google Scholar
Scarlett, A. G., Reinardy, H. C., Henry, T. B., West, C. E., Frank, R. A., Hewitt, L. M., Rowland, S. J., Acute toxicity of aromatic and non-aromatic fractions of naphthenic acids extracted from oil sands process-affected water to larval zebrafish. Chemosphere 2013, 93 (2), 415420.CrossRefGoogle ScholarPubMed
Holden, A. A., Haque, S. E., Mayer, K. U., Ulrich, A. C., Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling. Journal of Contaminant Hydrology 2013, 151, 5567.Google Scholar
Gosselin, P., Hrudey, S. E., Naeth, A., Plourde, A., Therrien, R., Van Der Kraak, G., Xu, Z. Environmental and Health Impactsof Canada’s Oil Sands Industry. Royal Society of Canada: 2010.Google Scholar
Jasechko, S., Gibson, J. J., Jean Birks, S., Yi, Y., Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region. Applied Geochemistry 2012, 27 (10), 20682076.Google Scholar
Ahad, J. M. E., Pakdel, H., Savard, M. M., Calderhead, A. I., Gammon, P. R., Rivera, A., Peru, K. M., Headley, J. V., Characterization and quantification of mining-related “naphthenic acids” in groundwater near a major oil sands tailings pond. Environmental Science & Technology 2013, 47 (10), 50235030.Google Scholar
Frank, R. A., Roy, J. W., Bickerton, G., Rowland, S. J., Headley, J. V., Scarlett, A. G., West, C. E., Peru, K. M., Parrott, J. L., Conly, F. M., Hewitt, L. M., Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification. Environmental Science & Technology 2014, 48 (5), 26602670.Google Scholar
Headley, J. V., Peru, K. M., Mohamed, M. H., Frank, R. A., Martin, J. W., Hazewinkel, R. R. O., Humphries, D., Gurprasad, N. P., Hewitt, L. M., Muir, D. C. G., Lindeman, D., Strub, R., Young, R. F., Grewer, D. M., Whittal, R. M., Fedorak, P. M., Birkholz, D. A., Hindle, R., Reisdorph, R., Wang, X., Kasperski, K. L., Hamilton, C., Woudneh, M., Wang, G., Loescher, B., Farwell, A., Dixon, D. G., Ross, M., Pereira, A. D. S., King, E., Barrow, M. P., Fahlman, B., Bailey, J., McMartin, D. W., Borchers, C. H., Ryan, C. H., Toor, N. S., Gillis, H. M., Zuin, L., Bickerton, G., McMaster, M., Sverko, E., Shang, D., Wilson, L. D., Wrona, F. J., Chemical fingerprinting of naphthenic acids and oil sands process waters – a review of analytical methods for environmental samples. Journal of Environmental Science and Health, Part A 2013, 48 (10), 11451163.Google Scholar
Kavanagh, R. J., Burnison, B. K., Frank, R. A., Solomon, K. R., Van Der Kraak, G., Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere 2009, 76 (1), 120126.Google Scholar
Savard, M. M., Ahad, J. M. E., Gammon, P., et al., A Local Test Study Distinguishes Natural from Anthropogenic Groundwater Contaminants near an Athabasca Oil Sands Mining Operation . Geological Survey of Canada: 2012.Google Scholar
Lari, E., Steinkey, D., Morandi, G., Rasmussen, J. B., Giesy, J. P., Pyle, G. G., Oil sands process-affected water impairs feeding by Daphnia magna. Chemosphere 2017, 175, 465472.Google Scholar
Lari, E., Wiseman, S., Mohaddes, E., Morandi, G., Alharbi, H., Pyle, G. G., Determining the effect of oil sands process-affected water on grazing behaviour of Daphnia magna, long-term consequences, and mechanism. Chemosphere 2016, 146, 362370.Google Scholar
Li, C., Fu, L., Stafford, J., Belosevic, M., Gamal El-Din, M., The toxicity of oil sands process-affected water (OSPW): a critical review. Science of the Total Environment 2017, 601602, 17851802.Google Scholar
Lyons, D. D., Morrison, C., Philibert, D. A., Gamal El-Din, M., Tierney, K. B., Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. Chemosphere 2018, 206, 405413.Google Scholar
McQueen, A. D., Kinley, C. M., Hendrikse, M., Gaspari, D. P., Calomeni, A. J., Iwinski, K. J., Castle, J. W., Haakensen, M. C., Peru, K. M., Headley, J. V., Rodgers, J. H., A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region. Chemosphere 2017, 173, 340350.Google Scholar
Miles, S. M., Hofstetter, S., Edwards, T., Dlusskaya, E., Cologgi, D. L., Gänzle, M., Ulrich, A. C., Tolerance and cytotoxicity of naphthenic acids on microorganisms isolated from oil sands process-affected water. Science of the Total Environment 2019, 695, 133749.Google Scholar
Morandi, G. D., Wiseman, S. B., Guan, M., Zhang, X. W., Martin, J. W., Giesy, J. P., Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). Chemosphere 2017, 186, 893900.Google Scholar
Philibert, D. A., Lyons, D. D., Qin, R., Huang, R., El-Din, M. G., Tierney, K. B., Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. Science of the Total Environment 2019, 693, 133611.Google Scholar
Bauer, A. E., Hewitt, L. M., Parrott, J. L., Bartlett, A. J., Gillis, P. L., Deeth, L. E., Rudy, M. D., Vanderveen, R., Brown, L., Campbell, S. D., Rodrigues, M. R., Farwell, A. J., Dixon, D. G., Frank, R. A., The toxicity of organic fractions from aged oil sands process-affected water to aquatic species. Science of the Total Environment 2019, 669, 702710.Google Scholar
Gibson, J. J., Yi, Y., Birks, S. J., Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: towards a monitoring strategy for assessing flow sources and water quality controls. Journal of Hydrology: Regional Studies 2016, 5, 131148.Google Scholar
Fennell, J., Arciszewski, T. J., Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. Science of the Total Environment 2019, 686, 968985.Google Scholar
Schuster, J. K., Harner, T., Su, K., Mihele, C., Eng, A., First results from the oil sands passive air monitoring network for polycyclic aromatic compounds. Environmental Science & Technology 2015, 49 (5), 29912998.Google Scholar
Hsu, Y.-M., Harner, T., Li, H., Fellin, P., PAH measurements in air in the Athabasca oil sands region. Environmental Science & Technology 2015, 49 (9), 55845592.Google Scholar
Parajulee, A., Wania, F., Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model. Proceedings of the National Academy of Sciences 2014, 111 (9), 33443349.Google Scholar
Ahad, J. M. E., Gammon, P. R., Gobeil, C., Jautzy, J., Krupa, S., Savard, M. M., Studabaker, W. B., Evaporative emissions from tailings ponds are not likely an important source of airborne PAHs in the Athabasca oil sands region. Proceedings of the National Academy of Sciences 2014, 111 (24), E2439E2439.Google Scholar
Landis, M. S., Berryman, S. D., White, E. M., Graney, J. R., Edgerton, E. S., Studabaker, W. B., Use of an epiphytic lichen and a novel geostatistical approach to evaluate spatial and temporal changes in atmospheric deposition in the Athabasca oil sands region, Alberta, Canada. Science of the Total Environment 2019, 692, 10051021.Google Scholar
Landis, M. S., Studabaker, W. B., Pancras, J. P., Graney, J. R., White, E. M., Edgerton, E. S., Source apportionment of ambient fine and coarse particulate matter polycyclic aromatic hydrocarbons at the Bertha Ganter-Fort McKay community site in the oil sands region of Alberta, Canada. Science of the Total Environment 2019, 666, 540558.Google Scholar
Landis, M. S., Studabaker, W. B., Patrick Pancras, J., Graney, J. R., Puckett, K., White, E. M., Edgerton, E. S., Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Science of the Total Environment 2019, 654, 12411257.Google Scholar
Studabaker, W. B., Puckett, K. J., Percy, K. E., Landis, M. S., Determination of polycyclic aromatic hydrocarbons, dibenzothiophene, and alkylated homologs in the lichen Hypogymnia physodes by gas chromatography using single quadrupole mass spectrometry and time-of-flight mass spectrometry. Journal of Chromatography A 2017, 1492, 106116.Google Scholar
Jautzy, J., Ahad, J. M. E., Gobeil, C., Savard, M. M., Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures. Environmental Science & Technology 2013, 47 (12), 61556163.Google Scholar
US Environmental Protection Agency, Detailed Study of the Petroleum Refining Category – 2019 Report. US Environmental Protection Agency: 2019.Google Scholar
Al Zarooni, M., Elshorbagy, W., Characterization and assessment of Al Ruwais refinery wastewater. Journal of Hazardous Materials 2006, 136 (3), 398405.Google Scholar
Coelho, A., Castro, A. V., Dezotti, M., Sant’Anna, G. L., Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials 2006, 137 (1), 178184.Google Scholar
Munirasu, S., Haija, M. A., Banat, F., Use of membrane technology for oil field and refinery produced water treatment – a review. Process Safety and Environmental Protection 2016, 100, 183202.Google Scholar
Wake, H., Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science 2005, 62 (1), 131140.Google Scholar
Board, T. R., Council, N. R., Oil in the Sea III: Inputs, Fates, and Effects. The National Academies Press: 2003.Google Scholar
Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., Fei, Y., Oil spills from global tankers: status review and future governance. Journal of Cleaner Production 2019, 227, 2032.Google Scholar
Barron, M. G., Vivian, D. N., Heintz, R. A., Yim, U. H., Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environmental Science & Technology 2021, 54 (11), 64566467.Google Scholar
Patterson, L. A., Konschnik, K. E., Wiseman, H., Fargione, J., Maloney, K. O., Kiesecker, J., Nicot, J.-P., Baruch-Mordo, S., Entrekin, S., Trainor, A., Saiers, J. E., Unconventional oil and gas spills: risks, mitigation priorities, and state reporting requirements. Environmental Science & Technology 2017, 51 (5), 25632573.Google Scholar
Duffy, J. J., Peake, E., Mohtadi, M. F., Oil spills on land as potential sources of groundwater contamination. Environmental International 1980, 3, 107120.Google Scholar
Delin, G. N., Essaid, H. I., Cozzarelli, I. M., Lahvis, M. H., Bekins, B. Ground Water Contamination by Crude Oil near Bemidji, Minnesota. US Geological Survey, Fact Sheet 084-98: 1998.Google Scholar
Cozzarelli, I. M., Baedecker, M. J., Eganhouse, R. P., Goerlitz, D. F., The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochimica et Cosmochimica Acta 1994, 58 (2), 863877.Google Scholar
Bennett, P. C., Siegel, D. I., Baedecker, M. J., Hult, M. F., Crude oil in a shallow aquifer, 1 – Aquifer characterization and hydrogeochemical controls on inorganic solutes. Applied Geochemistry 1993, 8, 529549.Google Scholar
Dillard, L. A., Essaid, H. I., Herkelrath, W. N., Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution. Water Resources Research 1997, 33 (7), 16171632.Google Scholar
Ng, G. H. C., Bekins, B. A., Cozzarelli, I. M., Baedecker, M. J., Bennett, P. C., Amos, R. T., A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN. Journal of Contaminant Hydrology 2014, 164, 115.Google Scholar
Ziegler, B. A., McGuire, J. T., Cozzarelli, I. M., Rates of As and trace-element mobilization caused by Fe reduction in mixed BTEX-ethanol experimental plumes. Environmental Science & Technology 2015, 49 (22), 1317913189.Google Scholar
Nesbitt, J. A., Lindsay, M. B. J., Vanadium geochemistry of oil sands fluid petroleum coke. Environmental Science & Technology 2017, 51 (5), 31023109.Google Scholar
Schlesinger, W. H., Klein, E. M., Vengosh, A., Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences 2017, 114 (52), E11092E11100.Google Scholar
Wilhelm, S. M., Liang, L., Cussen, D., Kirchgessner, D. A., Mercury in crude oil processed in the United States (2004). Environmental Science & Technology 2007, 41 (13), 45094514.Google Scholar
Mojammal, A. H. M., Back, S.-K., Seo, Y.-C., Kim, J.-H., Mass balance and behavior of mercury in oil refinery facilities. Atmospheric Pollution Research 2019, 10 (1), 145151.Google Scholar
US Environmental Protection Agency, Mercury Emissions: The Global Context. www.epa.gov/international-cooperation/mercury-emissions-global-context.Google Scholar
Barwise, A. J. G., Role of nickel and vanadium in petroleum classification. Energy & Fuels 1990, 4 (6), 647652.Google Scholar
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmospheric Environment 2008, 42 (34), 78517861.CrossRefGoogle Scholar
Soldi, T., Riolo, C., Alberti, G., Gallorini, M., Peloso, G. F., Environmental vanadium distribution from an industrial settlement. Science of the Total Environment 1996, 181 (1), 4550.Google Scholar
Mitchell, R. B., Intentional Oil Pollution at Sea: Environmental Policy and Treaty Compliance. MIT Press: 1994.Google Scholar
International Maritime Organization, International Convention for the Prevention of Pollution from Ships (MARPOL). www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx.Google Scholar
US Environmental Protection Agency, Summary of the Oil Pollution Act. www.epa.gov/laws-regulations/summary-oil-pollution-act.Google Scholar
Cohen, S., The use of strategic planning, information, and analysis in environmental policy making and management. In The Oxford Handbook of US Environmental Policy, Sheldon Kamieniecki, S., Kraft, M. E., eds. Oxford University Press: 2013.Google Scholar
Büthe, T., Mattli, W., The New Global Rulers: The Privatization of Regulation in the World Economy. Princeton University Press: 2011.Google Scholar
Frynas, J. G., Corporate social responsibility or government regulation? Evidence on oil spill prevention. Ecology and Society 2012, 17, 4.Google Scholar
O’Rourke, D., Connolly, S., Just oil? The distribution of environmental and social impacts of oil production and consumption Annual Review of Environment and Resources 2003, 28, 587617.Google Scholar
Council, G. R. Produced Water Report: Regulations, Current Practices, and Reserach Needs. Groundwater Rptection Council: 2019.Google Scholar
Lee, M. EPA may let oil waste in waterways. Is the public at risk? www.eenews.net/stories/1061525917.Google Scholar
Yergin, D., The Prize: The Epic Question for Oil, Money and Power. Simon & Schuster: 1991.Google Scholar
Bradshaw, M. J., Boersma, T., Natural Gas. Polity Press: 2020.Google Scholar
Evans, P. C., Farima, M. F. The Age of Gas & The Power Networks. General Electric Company: 2013.Google Scholar
Stern, J. P., The Future of Russian Gas and Gazprom. Oxford University Press: 2005.Google Scholar
China National Petroleum Corporation, Central Asia–China Gas Pipeline. www.cnpc.com.cn/en/CentralAsia/CentralAsia_index.shtml.Google Scholar
Xu, M., Aizhu, C., Astakhova, O. Landmark Siberian gas to test CNPC’s marketing mettle in China’s backwaters. www.reuters.com/places/russia/article/us-china-russia-gas-pipeline/landmark-siberian-gas-to-test-cnpcs-marketing-mettle-in-chinas-backwaters-idUSKBN1Y30JH.Google Scholar
International Energy Agency (IEA), WEO-2011 Special Report: Are We Entering a Golden Age? International Energy Agency (IEA): 2011.Google Scholar
Wu, K., China׳s energy security: oil and gas. Energy Policy 2014, 73, 411.Google Scholar
US Energy Information Administration (EIA), Technically Recoverable Shale Oil and Shale Gas Resources: China. US Department of Energy: 2015.Google Scholar
Dong, D., Wang, Y., Li, X., Zou, C., Guan, Q., Zhang, C., Huang, J., Wang, S., Wang, H., Liu, H., Bai, W., Liang, F., Lin, W., Zhao, Q., Liu, D., Qiu, Z., Breakthrough and prospect of shale gas exploration and development in China. Natural Gas Industry B 2016, 3 (1), 1226.Google Scholar
Dong, D., Zou, C., Dai, J., Huang, S., Zheng, J., Gong, J., Wang, Y., Li, X., Guan, Q., Zhang, C., Huang, J., Wang, S., Liu, D., Qiu, Z., Suggestions on the development strategy of shale gas in China. Journal of Natural Gas Geoscience 2016, 1 (6), 413423.Google Scholar
Speight, J. G., Natural Gas: A Basic Handbook. Gulf Pub. Co.: 2007.Google Scholar
Speight, J. G., Handbook of Natural Gas Analysis. John Wiley & Sons: 2018.Google Scholar
Faramawy, S., Zaki, T., Sakr, A. A. E., Natural gas origin, composition, and processing: a review. Journal of Natural Gas Science and Engineering 2016, 34, 3454.Google Scholar
Lollar, B. S., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T. C., Pratt, L. M., Slater, G. F., Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochimica et Cosmochimica Acta 2008, 72 (19), 47784795.Google Scholar
Etiope, G., Schoell, M., Abiotic gas: atypical but not rare. Elements 2014, 10, 291296.Google Scholar
US Energy Information Administration (EIA), Coalbed Methane Production. www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm.Google Scholar
Schoell, M., The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 1980, 44 (5), 649661.Google Scholar
Schoell, M., Recent advances in petroleum isotope geochemistry. Organic Geochemistry 1984, 6, 645663.Google Scholar
Schoell, M., Multiple origins of methane in the Earth. Chemical Geology 1988, 71 (1), 110.Google Scholar
Whiticar, M. J., Faber, E., Schoell, M., Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – isotope evidence. Geochimica et Cosmochimica Acta 1986, 50 (5), 693709.Google Scholar
Milkov, A. V., Etiope, G., Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Organic Geochemistry 2018, 125, 109120.Google Scholar
Martini, A. M., Walter, L. M., Budai, J. M., Ku, T. C. W., Kaiser, C. J., Schoell, M., Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochimica et Cosmochimica Acta 1998, 62 (10), 16991720.Google Scholar
Kinnaman, F. S., Valentine, D. L., Tyler, S. C., Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochimica et Cosmochimica Acta 2007, 71 (2), 271283.Google Scholar
Schoell, M., Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin 1983, 67, 22252238.Google Scholar
Bernard, B., Brooks, J. M., Sackett, W. M., A geochemical model for characterization of hydrocarbon gas sources in marine sediments. In 9th Annual Offshore Technology Conference. 1977, pp. 435–438, https://doi.org/10.4043/2934-MS.Google Scholar
Milkov, A. V., Faiz, M., Etiope, G., Geochemistry of shale gases from around the world: composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Organic Geochemistry 2020, 143, 103997.Google Scholar
Golding, S. D., Boreham, C. J., Esterle, J. S., Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. International Journal of Coal Geology 2013, 120, 2440.Google Scholar
Milkov, A. V., Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Organic Geochemistry 2011, 42 (2), 184207.Google Scholar
Belyadi, H., Fathi, E., Belyadi, F., Hydraulic fracturing fluid systems. In Hydraulic Fracturing in Unconventional Reservoirs, Belyadi, H., Fathi, E., Belyadi, F., eds. Gulf Professional Publishing: 2017, pp. 4972.Google Scholar
US Energy Information Administration (EIA), Oil and Gas Supply Module. www.eia.gov/outlooks/aeo/assumptions/pdf/oilgas.pdf.Google Scholar
Liu, P., Feng, Y., Zhao, L., Li, N., Luo, Z., Technical status and challenges of shale gas development in Sichuan Basin, China. Petroleum 2015, 1 (1), 17.Google Scholar
Ma, X., Xie, J., The progress and prospects of shale gas exploration and development in southern Sichuan Basin, SW China. Petroleum Exploration and Development 2018, 45 (1), 172182.Google Scholar
Wang, S., Shale gas exploitation: status, problems and prospect. Natural Gas Industry B 2018, 5 (1), 6074.Google Scholar
Zhao, Q., Yang, S., Wang, H., Wang, N., Liu, D., Liu, H., Zang, H., Prediction of marine shale gas production in South China based on drilling workload analysis. Natural Gas Industry B 2016, 3 (6), 545551.Google Scholar
US Energy Information Administration (EIA), The Distribution of US Oil and Natural Gas Wells by Production Rate. US Department of Energy: 2019.Google Scholar
Gallegos, T. J., Varela, B. A., Haines, S. S., Engle, M. A., Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resources Research 2015, 51, 58395845.Google Scholar
Makhanov, K., Habibi, A., Dehghanpour, H., Kuru, E., Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations. Journal of Unconventional Oil and Gas Resources 2014, 7, 2232.Google Scholar
Lan, Q., Ghanbari, E., Dehghanpour, H., Hawkes, R., Water loss versus soaking time: spontaneous imbibition in tight rocks. Energy Technology 2014, 2, 1033−1039.Google Scholar
Xu, Y., Adefidipe, O. A., Dehghanpour, H., Estimating fracture volume using flowback data from the Horn River Basin: a material balance approach. Journal of Natural Gas Science Engineering 2015, 25, 253−270.Google Scholar
Ghanbari, E. A. D. H., The fate of fracturing water: a field and simulation study. Fuel 2016, 163, 282294.Google Scholar
Yu, M., Weinthal, E., Patiño-Echeverri, D., Deshusses, M. A., Zou, C. Ni, Y., Vengosh, A., Water availability for shale gas development in Sichuan Basin, China. Environmental Science & Technology 2016, 50, 28372845.Google Scholar
Yang, B., Zhang, H., Kang, Y., You, L., She, J., Wang, K., Chen, Z., In situ sequestration of a hydraulic fracturing fluid in Longmaxi Shale gas formation in the Sichuan Basin. Energy Fuels 2019, 33, 69836994.Google Scholar
Binazadeh, M., Xu, M., Zolfaghari, A., Dehghanpour, H., Effect of electrostatic interactions on water uptake of gas shales: the interplay of solution ionic strength and electrostatic double layer. Energy Fuels 2016, 30, 992−1001.Google Scholar
Fakcharoenphol, P., Torcuk, M., Kazemi, H. Wu, Y-S., Effect of shut-in time on gas flow rate in hydraulic fractured shale reservoirs. Journal of Natural Gas Science and Engineering 2016, 32, 109121.Google Scholar
Singh, H., A critical review of water uptake by shales. Journal of Natural Gas Science and Engineering 2016, 34, 751766.Google Scholar
Fan, K., Li, Y., Elsworth, D., Dong, M., Yin, C., Li, Y., Chen, Z., Three stages of methane adsorption capacity affected by moisture content. Fuel 2018, 231, 352360.Google Scholar
Zhou, J., Mao, Q., Luo, K. H., Effects of moisture and salinity on methane adsorption in kerogen: a molecular simulation study. Energy Fuels 2019, 33, 5368−5376.Google Scholar
Clark, C. E., Horner, R. M., Harto, C. B., Life cycle water consumption for shale gas and conventional natural gas. Environmental Science & Technology 2013, 47 (20), 1182911836.Google Scholar
Guo, T. L., Discovery and characteristics of the Fuling Shale gas field and its enlightenment and thinking. Earth Science Frontiers 2016, 23, 2943.Google Scholar
US Energy Information Administration (EIA), The Basics of Underground Natural Gas Storage. www.eia.gov/naturalgas/storage/basics/.Google Scholar
US Energy Information Administration (EIA), What is US Electricity Generation by Energy Source? www.eia.gov/tools/faqs/faq.php?id=427&t=3.Google Scholar
Stringfellow, W. T., Domen, J. K., Camarillo, M. K., Sandelin, W. L., Borglin, S., Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. Journal of Hazardous Materials 2014, 275, 3754.Google Scholar
Chen, H., Carter, K. E., Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play. Journal of Environmental Management 2017, 200, 312324.Google Scholar
Kassotis, C. D., Harkness, J. S., Vo, P. H., Vu, D. C., Hoffman, K., Cinnamon, K. M., Cornelius-Green, J. N., Vengosh, A., Lin, C.-H., Tillitt, D. E., Kruse, R. L., McElroy, J. A., Nagel, S. C., Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity. Science of the Total Environment 2020, 748, 142236.Google Scholar
Ellsworth, W. L., Injection-induced earthquakes. Science 2013, 341 (6142), 1225942.Google Scholar
Dresel, P. E., Rose, A. W., Chemistry and Origin of Oil and Gas Well Brines in Western Pennsylvania. Pennsylvania Geological Survey: 2010.Google Scholar
Osborn, S. G., McIntosh, J. C., Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin. Applied Geochemistry 2010, 25, 456471.Google Scholar
Osborn, S. G., McIntosh, J. C., Hanor, J., Biddulph, Iodine-129, 87Sr/86Sr, and trace elemental geochemistry of Northern Appalachian Basin brines: evidence for basinal-scale fluid migration and clay mineral diagenesis. American Journal of Science 2012, 312, 263287.Google Scholar
Darrah, T. H., Jackson, R. B., Vengosh, A., Warner, N. R., Whyte, C. J., Walsh, T. B., Kondash, A. J., Poreda, R. J., The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry. Geochimica et Cosmochimica Acta 2015, 170, 321355.Google Scholar
Darrah, T. H., Vengosh, A., Jackson, R. B., Warner, N. R., Poreda, R. J., Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (39), 1407614081.Google Scholar
Darrah, T. H., Jackson, R. B., Vengosh, A., Warner, N. R., Poreda, R. J., Noble gases: a new technique for fugitive gas investigation in groundwater. Groundwater 2015, 53 (1), 2328.Google Scholar
Jackson, R. B., Vengosh, A., Darrah, T. H., Warner, N. R., Down, A., Poreda, R. J., Osborn, S. G., Zhao, K. G., Karr, J. D., Increased stray gas abundance in a subset of drinking water wells near Marcellus Shale gas extraction. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (28), 1125011255.Google Scholar
Kreuzer, R. L., Darrah, T. H., Grove, B. S., Moore, M. T., Warner, N. R., Eymold, W. K., Whyte, C. J., Mitra, G., Jackson, R. B., Vengosh, A., Poreda, R. J., Structural and hydrogeological controls on hydrocarbon and brine migration into drinking water aquifers in southern New York. Groundwater 2018, 56 (2), 225244.Google Scholar
McIntosh, J. C., Hendry, M. J., Ballentine, C., Haszeldine, R. S., Mayer, B., Etiope, G., Elsner, M., Darrah, T. H., Prinzhofer, A., Osborn, S., Stalker, L., Kuloyo, O., Lu, Z. T., Martini, A., Lollar, B. S., A Critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers. Environmental Science & Technology 2019, 53 (3), 10631077.Google Scholar
Rosenblum, J., Nelson, A. W., Ruyle, B., Schultz, M. K., Ryan, J. N., Linden, K. G., Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well. Science of the Total Environment 2017, 596 –597, 369377.Google Scholar
Rowan, E. L., Engle, M. A., Kraemer, T. F., Schroeder, K. T., Hammack, R. W., Doughten, M. W., Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus Shale gas wells, Appalachian Basin, Pennsylvania. AAPG Bulletin 2015, 99, 181206.Google Scholar
Balashov, V. N., Engelder, T., Gu, X., Fantle, M. S., Brantley, S. L., A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. AAPG Bulletin 2015, 99, 143154.Google Scholar
Stewart, B. W., Chapman, E. C., Capo, R. C., Johnson, J. D., Graney, J. R., Kirby, C. S., Schroeder, K. T., Origin of brines, salts and carbonate from shales of the Marcellus Formation: evidence from geochemical and Sr isotope study of sequentially extracted fluids. Applied Geochemistry 2015, 60, 7888.Google Scholar
Tieman, Z. G., Stewart, B. W., Capo, R. C., Phan, T. T., Lopano, C. L., Hakala, J. A., Barium isotopes track the source of dissolved solids in produced water from the unconventional Marcellus Shale Gas Play. Environmental Science & Technology 2020, 54 (7), 42754285.Google Scholar
Gao, J., Zou, C., Li, W., Ni, Y., Liao, F., Yao, L., Sui, J., Vengosh, A., Hydrochemistry of flowback water from Changning Shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: implications for the possible impact of shale gas development on groundwater quality. Science of the Total Environment 2020, 713, 136591.Google Scholar
Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., Abad, J. D., Impact of Shale Gas Development on Regional Water Quality. Science 2013, 340 (6134), 1235009.Google Scholar
Huang, T., Pang, Z., Li, Z., Li, Y., Hao, Y., A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China. Journal of Hydrology 2020, 581, 124403.Google Scholar
Wang, B., Xiong, M., Wang, P., Shi, B., Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China. Environmental Science and Pollution Research 2020, 27 (21), 2653226542.Google Scholar
Jacobs, R. P. W. M., Grant, R. O. H., Kwant, J., Marquenie, J. M., Mentzer, E., The composition of produced water from Shell operated oil and gas production in the North Sea. In Produced Water, Ray, J. P., Engelhardt, R., eds. Springer: 1992.Google Scholar
Kondash, A. J., Warner, N. R., Lahav, O., Vengosh, A., Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environmental Science & Technology 2014, 48 (2), 13341342.Google Scholar
Balashov, V. N., Engelder, T., Gu, X., Fantle, M. S., Brantley, S. L., A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. AAPG Bulletin 2015, 99 (1), 143154.Google Scholar
Webster, I. T., Hancock, G. J., Murray, A. S., Modelling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta 1995, 59 (12), 24692476.Google Scholar
Sturchio, N. C., Banner, J. L., Binz, C. M., Heraty, L. B., Musgrove, M., Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Applied Geochemistry 2001, 16 (1), 109122.Google Scholar
Lüning, S., Kolonic, S., Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology 2003, 26 (2), 153174.Google Scholar
Liu, B., Mastalerz, M., Schieber, J., Teng, J., Association of uranium with macerals in marine black shales: insights from the Upper Devonian New Albany Shale, Illinois Basin. International Journal of Coal Geology 2020, 217, 103351.Google Scholar
Jew, A. D., Besançon, C. J., Roycroft, S. J., Noel, V. S., Bargar, J. R., Brown, G. E., Chemical speciation and stability of uranium in unconventional shales: impact of hydraulic fracture fluid. Environmental Science & Technology 2020, 54 (12), 73207329.Google Scholar
Wang, G., Jin, Z., Liu, G., Liu, Q., Liu, Z., Wang, H., Liang, X., Jiang, T., Wang, R., Geological implications of gamma ray (GR) anomalies in marine shales: a case study of the Ordovician-Silurian Wufeng-Longmaxi succession in the Sichuan Basin and its periphery, Southwest China. Journal of Asian Earth Sciences 2020, 199, 104359.Google Scholar
Vengosh, A., Hirschfeld, D., Vinson, D., Dwyer, G., Raanan, H., Rimawi, O., Al-Zoubi, A., Akkawi, E., Marie, A., Haquin, G., Zaarur, S., Ganor, J., High naturally occurring radioactivity in fossil groundwater from the Middle East. Environmental Science & Technology 2009, 43 (6), 17691775.Google Scholar
Tasker, T. L., Warner, N. R., Burgos, W. D., Geochemical and isotope analysis of produced water from the Utica/Point Pleasant Shale, Appalachian Basin. Environmental Science: Processes & Impacts 2020, 22 (5), 12241232.Google Scholar
Szczuka, A., Parker, K. M., Harvey, C., Hayes, E., Vengosh, A., Mitch, W. A., Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater. Water Research 2017, 122, 633644.Google Scholar
US Environmental Protection Agency, Detailed Study of the Centralized Waste Treatment Point Source Category for Facilities Managing Oil and Gas Extraction Wastes. US Environmental Protection Agency: 2018.Google Scholar
Ferrar, K. J., Michanowicz, D. R., Christen, C. L., Mulcahy, N., Malone, S. L., Sharma, R. K., Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania. Environmental Science & Technology 2013, 47 (7), 34723481.Google Scholar
Landis, M. S., Kamal, A. S., Kovalcik, K. D., Croghan, C., Norris, G. A., Bergdale, A., The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA. Science of the Total Environment 2016, 542, 505520.Google Scholar
Geeza, T. J., Gillikin, D. P., McDevitt, B., Van Sice, K., Warner, N. R., Accumulation of Marcellus Formation oil and gas wastewater metals in freshwater mussel shells. Environmental Science & Technology 2018, 52 (18), 1088310892.Google Scholar
Brantley, S. L., Yoxtheimer, D., Arjmand, S., Grieve, P., Vidic, R., Pollak, J., Llewellyn, G. T., Abad, J., Simon, C., Water resource impacts during unconventional shale gas development: the Pennsylvania experience. International Journal of Coal Geology 2014, 126, 140156.Google Scholar
Maloney, K. O., Baruch-Mordo, S., Patterson, L. A., Nicot, J.-P., Entrekin, S. A., Fargione, J. E., Kiesecker, J. M., Konschnik, K. E., Ryan, J. N., Trainor, A. M., Saiers, J. E., Wiseman, H. J., Unconventional oil and gas spills: materials, volumes, and risks to surface waters in four states of the US Science of the Total Environment 2017, 581 –582, 369377.Google Scholar
Rozell, D. J., Reaven, S. J., Water pollution risk associated with natural gas extraction from the Marcellus Shale. Risk Analysis 2012, 32 (8), 13821393.Google Scholar
Jackson, R. B., Lowry, E. R., Pickle, A., Kang, M., DiGiulio, D., Zhao, K., The depths of hydraulic fracturing and accompanying water use across the United States. Environmental Science & Technology 2015, 49 (15), 89698976.Google Scholar
DiGiulio, D. C., Jackson, R. B., Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, Field. Environmental Science & Technology 2016, 50 (8), 45244536.Google Scholar
Drollette, B. D., Hoelzer, K., Warner, N. R., Darrah, T. H., Karatum, O., O’Connor, M. P., Nelson, R. K., Fernandez, L. A., Reddy, C. M., Vengosh, A., Jackson, R. B., Elsner, M., Plata, D. L., Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proceedings of the National Academy of Sciences 2015, 112 (43), 1318413189.Google Scholar
Llewellyn, G. T., Dorman, F., Westland, J. L., Yoxtheimer, D., Grieve, P., Sowers, T., Humston-Fulmer, E., Brantley, S. L., Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proceedings of the National Academy of Sciences 2015, 112 (20), 63256330.Google Scholar
Dilmore, R. M., Sams, J. I., Glosser, D., Carter, K. M., Bain, D. J., Spatial and temporal characteristics of historical oil and gas wells in Pennsylvania: implications for new shale gas resources. Environmental Science & Technology 2015, 49 (20), 1201512023.Google Scholar
King, G. E., Valencia, R. L., Environmental risk and well integrity of plugged and abandoned wells. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers: 2014.Google Scholar
Chapman, E. C., Capo, R. C., Stewart, B. W., Hedin, R. S., Weaver, T. J., Edenborn, H. M., Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau. Applied Geochemistry 2013, 31, 109118.Google Scholar
Skuce, M., Longstaffe, F. J., Carter, T. R., Potter, J., Isotopic fingerprinting of groundwaters in southwestern Ontario: Applications to abandoned well remediation. Applied Geochemistry 2015, 58, 113.Google Scholar
Osborn, S. G., Vengosh, A., Warner, N. R., Jackson, R. B., Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences 2011, 108 (20), 81728176.Google Scholar
Sherwood, O. A., Rogers, J. D., Lackey, G., Burke, T. L., Osborn, S. G., Ryan, J. N., Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado. Proceedings of the National Academy of Sciences 2016, 113 (30), 83918396.Google Scholar
Molofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T., Farhat, S. K., Evaluation of methane sources in groundwater in northeastern Pennsylvania. Groundwater 2013, 51 (3), 333349.Google Scholar
Siegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., Bothun, R. L., Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. Environmental Science & Technology 2015, 49 (7), 41064112.Google Scholar
Barth-Naftilan, E., Sohng, J., Saiers, J. E., Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale. Proceedings of the National Academy of Sciences 2018, 115 (27), 69706975.Google Scholar
Nicot, J.-P., Larson, T., Darvari, R., Mickler, P., Slotten, M., Aldridge, J., Uhlman, K., Costley, R., Controls on methane occurrences in shallow aquifers overlying the Haynesville Shale Gas Field, East Texas. Groundwater 2017, 55 (4), 443454.Google Scholar
Nicot, J.-P., Larson, T., Darvari, R., Mickler, P., Uhlman, K., Costley, R., Controls on methane occurrences in aquifers overlying the Eagle Ford Shale Play, South Texas. Groundwater 2017, 55 (4), 455468.Google Scholar
Nicot, J. P. M. P., Larson, T., Castro, M. C., Darvari, R., Uhlman, K., Costley, R., Methane occurrences in aquifers overlying the Barnett Shale Play with a focus on Parker County, Texas. GroundWater 2017, 55, 469481.Google Scholar
Warner, N. R., Kresse, T. M., Hays, P. D., Down, A., Karr, J. D., Jackson, R. B., Vengosh, A., Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Applied Geochemistry 2013, 35, 207220.Google Scholar
Down, A., Schreglmann, K., Plata, D. L., Elsner, M., Warner, N. R., Vengosh, A., Moore, K., Coleman, D., Jackson, R. B., Pre-drilling background groundwater quality in the Deep River Triassic Basin of central North Carolina, USA. Applied Geochemistry 2015, 60, 313.Google Scholar
Chapman, M. J., Gurley, L. N., Fitzgerald, S. A., Baseline Well Inventory and Groundwater-Quality Data from a Potential Shale Gas Resource Area in Parts of Lee and Chatham Counties, North Carolina, October 2011–August 2012. US Geological Survey: 2014.Google Scholar
Eckhardt, D. A., Sloto, R. A., Baseline Groundwater Quality in National Park Units within the Marcellus and Utica Shale Gas Plays, New York, Pennsylvania, and West Virginia, 2011. US Geological Survey: 2012.Google Scholar
Jackson, R. E., Heagle, D. J., Sampling domestic/farm wells for baseline groundwater quality and fugitive gas. Hydrogeology Journal 2016, 24, 269272.Google Scholar
Humez, P., Mayer, B., Nightingale, M., Ing, J., Becker, V., Jones, D., Lam, V., An 8-year record of gas geochemistry and isotopic composition of methane during baseline sampling at a groundwater observation well in Alberta (Canada). Hydrogeology Journal 2016, 24 (1), 109122.Google Scholar
Moritz, A., Hélie, J.-F., Pinti, D. L., Larocque, M., Barnetche, D., Retailleau, S., Lefebvre, R., Gélinas, Y., Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada). Environmental Science & Technology 2015, 49 (7), 47654771.Google Scholar
Lavoie, D., Rivard, C., Lefebvre, R., Séjourné, S., Thériault, R., Duchesne, M. J., Ahad, J. M. E., Wang, B., Benoit, N., Lamontagne, C., The Utica Shale and Gas Play in southern Quebec: geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology 2014, 126, 7791.Google Scholar
Rhodes, A. L., Horton, N. J., Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, U.S.A. Applied Geochemistry 2015, 60, 1428.Google Scholar
Montcoudiol, N., Banks, D., Isherwood, C., Gunning, A., Burnside, N., Baseline groundwater monitoring for shale gas extraction: definition of baseline conditions and recommendations from a real site (Wysin, Northern Poland). Acta Geophysica 2019, 67 (1), 365384.Google Scholar
Huang, T., Pang, Z., Tian, J., Li, Y., Yang, S., Luo, L., Methane content and isotopic composition of shallow groundwater: implications for environmental monitoring related to shale gas exploitation. Journal of Radioanalytical and Nuclear Chemistry 2017, 312 (3), 577585.Google Scholar
Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., Van Stempvoort, D. R., Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research. Groundwater 2013, 51 (4), 488510.Google Scholar
Smedley, P. L., Ward, R. S., Bearcock, J. M., Bowes, M. J., Establishing the baseline in groundwater chemistry in connection with shale-gas exploration: Vale of Pickering, UK. Procedia Earth and Planetary Science 2017, 17, 678681.Google Scholar
Li Z, H. T., Ma, B., Long, Y., Zhang, F., Tian, J., Li, Y., Pang, Z.., Baseline groundwater quality before shale gas development in Xishui, Southwest China: analyses of hydrochemistry and multiple environmental isotopes (2H, 18O, 13C, 87Sr/86Sr, 11B, and noble gas isotopes). Water 2020, 12, 1741.Google Scholar
Bell, R. A., Darling, W. G., Ward, R. S., Basava-Reddi, L., Halwa, L., Manamsa, K., Ó Dochartaigh, B. E., A baseline survey of dissolved methane in aquifers of Great Britain. Science of the Total Environment 2017, 601 –602, 18031813.Google Scholar
Humez, P., Mayer, B., Ing, J., Nightingale, M., Becker, V., Kingston, A., Akbilgic, O., Taylor, S., Occurrence and origin of methane in groundwater in Alberta (Canada): Gas geochemical and isotopic approaches. Science of the Total Environment 2016, 541, 12531268.Google Scholar
Siegel, D. I., Smith, B., Perry, E., Bothun, R., Hollingsworth, M., Pre-drilling water-quality data of groundwater prior to shale gas drilling in the Appalachian Basin: analysis of the Chesapeake Energy Corporation dataset. Applied Geochemistry 2015, 63, 3757.Google Scholar
Eymold, W. K., Swana, K., Moore, M. T., Whyte, C. J., Harkness, J. S., Talma, S., Murray, R., Moortgat, J. B., Miller, J., Vengosh, A., Darrah, T. H., Hydrocarbon-rich groundwater above shale-gas formations: a Karoo Basin case study. Groundwater 2018, 56 (2), 204224.Google Scholar
Claire Botner, E., Townsend-Small, A., Nash, D. B., Xu, X., Schimmelmann, A., Miller, J. H., Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio. Environmental Monitoring and Assessment 2018, 190 (6), 322.Google Scholar
Harkness, J. S., Swana, K., Eymold, W. K., Miller, J., Murray, R., Talma, S., Whyte, C. J., Moore, M. T., Maletic, E. L., Vengosh, A., Darrah, T. H., Pre-drill groundwater geochemistry in the Karoo Basin, South Africa. Groundwater 2018, 56 (2), 187203.Google Scholar
Schout, G., Hartog, N., Hassanizadeh, S. M., Griffioen, J., Impact of an historic underground gas well blowout on the current methane chemistry in a shallow groundwater system. Proceedings of the National Academy of Sciences 2018, 115 (2), 296301.Google Scholar
Woda, J., Wen, T., Oakley, D., Yoxtheimer, D., Engelder, T., Castro, M. C., Brantley, S. L., Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells. Proceedings of the National Academy of Sciences 2018, 115 (49), 1234912358.Google Scholar
Wen, T., Castro, M. C., Nicot, J.-P., Hall, C. M., Larson, T., Mickler, P., Darvari, R., Methane sources and migration mechanisms in shallow groundwaters in Parker and Hood counties, Texas – a heavy noble gas analysis. Environmental Science & Technology 2016, 50 (21), 1201212021.Google Scholar
Wen, T., Castro, M. C., Nicot, J.-P., Hall, C. M., Pinti, D. L., Mickler, P., Darvari, R., Larson, T., Characterizing the noble gas isotopic composition of the Barnett Shale and Strawn Group and constraining the source of stray gas in the Trinity Aquifer, North-Central Texas. Environmental Science & Technology 2017, 51 (11), 65336541.Google Scholar
Muehlenbachs, K. Identifying the Sources of Fugitive Methane Associated with Shale Gas Development. Resources for the Future: 2013.Google Scholar
Rowe, D., Muehlenbachs, K., Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: tools for remediation of leaking heavy oil wells. Organic Geochemistry 1999, 30 (8, part 1), 861871.Google Scholar
Lefebvre, R., Mechanisms leading to potential impacts of shale gas development on groundwater quality. WIREs Water 2017, 4 (1), e1188.Google Scholar
Jackson, R. B., The integrity of oil and gas wells. Proceedings of the National Academy of Sciences 2014, 111 (30), 1090210903.Google Scholar
Brufatto, C. C. J., Conn, L., Ower, D., From mud to cement – building gas wells. Oil Field Review 2003, 2003, 6276.Google Scholar
Ingraffea, A. R., Wells, M. T., Santoro, R. L., Shonkoff, S. B. C., Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proceedings of the National Academy of Sciences 2014, 111 (30), 1095510960.Google Scholar
Wen, T., Woda, J., Marcon, V., Niu, X., Li, Z., Brantley, S. L., Exploring how to use groundwater chemistry to identify migration of methane near shale gas wells in the Appalachian Basin. Environmental Science & Technology 2019, 53 (15), 93179327.Google Scholar
Van Stempvoort, D., Maathuis, H., Jaworski, E., Mayer, B., Rich, K., Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Groundwater 2005, 43 (2), 187199.Google Scholar
Fontenot, B. E., Hunt, L. R., Hildenbrand, Z. L., Carlton, Jr., Oka, D. D., Walton, H., Hopkins, J. L., Osorio, D., Bjorndal, A., Hu, B., Schug, Q. H., , K. A., An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation. Environmental Science & Technology 2013, 47 (17), 1003210040.Google Scholar
Hammond, P. A., Wen, T., Brantley, S. L., Engelder, T., Gas well integrity and methane migration: evaluation of published evidence during shale-gas development in the USA. Hydrogeology Journal 2020, 28 (4), 14811502.Google Scholar
Al-Jubori, A., Johnston, S., Boyer, C., Lambert, S. W., Bustos, O. A., Pashin, J. C., Wray, A., Coalbed methane: clean energy for the world. Oilfield Review 2009, 21, 413.Google Scholar
Boger, C., Marshall, J. S., Pilcher, R. C., Worldwide coal mine methane and coalbed methane activities. In Coal Bed Methane, Thakur, P., Schatzel, S., Aminian, K., eds. Elsevier: 2014, pp. 351407.Google Scholar
Flores, R. M., Coal and Coalbed Gas: Fueling the Future. Elsevier Science & Technology: 2013.Google Scholar
Li, H., Lau, H. C., Huang, S., China’s coalbed methane development: a review of the challenges and opportunities in subsurface and surface engineering. Journal of Petroleum Science and Engineering 2018, 166, 621635.Google Scholar
National Research Council, Management and Effects of Coalbed Methane Produced Water in the Western United States. The National Academies Press: 2010.Google Scholar
Zeng, Q., Wang, Z., McPherson, B. J., McLennan, J. D., Modeling competitive adsorption between methane and water on coals. Energy & Fuels 2017, 31 (10), 1077510786.Google Scholar
Colmenares, L. B., Zoback, M. D., Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: implications for water and gas production. AAPG Bulletin 2007, 91, 5167.Google Scholar
Ayers, W. B., Kaiser, W. R. Coalbed Methane in the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado. Bureau of Economic Geology, the University of Texas at Austin: 1994.Google Scholar
Bleizeffer, D., Coalbed Methane: Boom, Bust and Hard Lessons. www.wyohistory.org/encyclopedia/coalbed-methane-boom-bust-and-hard-lessons.Google Scholar
Cheung, K., Klassen, P., Mayer, B., Goodarzi, F., Aravena, R., Major ion and isotope geochemistry of fluids and gases from coalbed methane and shallow groundwater wells in Alberta, Canada. Applied Geochemistry 2010, 25 (9), 13071329.Google Scholar
Johnston, C. R., Vance, G. F., Ganjegunte, G. K., Irrigation with coalbed natural gas co-produced water. Agricultural Water Management 2008, 95 (11), 12431252.Google Scholar
Myers, T., Groundwater management and coal bed methane development in the Powder River Basin of Montana. Journal of Hydrology 2009, 368 (1), 178193.Google Scholar
Snyder, G. T., Riese, W. C. R., Franks, S., Fehn, U., Pelzmann, W. L., Gorody, A. W., Moran, J. E., Origin and history of waters associated with coalbed methane: 129I, 36Cl, and stable isotope results from the Fruitland Formation, CO and NM. Geochimica et Cosmochimica Acta 2003, 67 (23), 45294544.Google Scholar
Van Voast, W. A., Geochemical signature of formation waters associated with coalbed methane. AAPG Bulletin 2003, 87, 667676.Google Scholar
Pashin, J. C., Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview. International Journal of Coal Geology 1998, 35 (1), 209240.Google Scholar
Pashin, J. C., Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: key to understanding reservoir performance and environmental issues. Applied Geochemistry 2007, 22 (10), 22572272.Google Scholar
Pashin, J. C., Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin: implications for exploration and production. International Journal of Coal Geology 2010, 82 (3), 135146.Google Scholar
Campbell, C. E., Pearson, B. N. and Frost, C. D., Strontium isotopes as indicators of aquifer communication in an area of coal-bed natural gas production, Powder River Basin, Wyoming and Montana. Rocky Mountain Geology 2008, 43, 171197.Google Scholar
Rice, C. A., Ellis, M. S., Bullock, J. H., Water Co-produced with Coalbed Methane in the Powder River Basin, Wyoming: Preliminary Compositional Data. US Geolgical Survey: 2000.Google Scholar
Rice, C. A., Flores, R. M., Stricker, G. D., Ellis, M. S., Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A. International Journal of Coal Geology 2008, 76 (1), 7685.Google Scholar
Jackson, R. E., Reddy, K. J., Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environmental Science & Technology 2007, 41 (17), 59535959.Google Scholar
Ayers, W. B., Kaiser, W. R., Coalbed Methane in the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado. New Mexico Bureau of Mines and Mineral Resources: 1994, Vol. 146.Google Scholar
Golding, S. D., Boreham, C. J., Esterle, J. S., Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. International Journal of Coal Geology 2013, 120, 2440.Google Scholar
Frost, C. D., Pearson, B. N., Ogle, K. M., Heffern, E. L., Lyman, R. M., Sr isotope tracing of aquifer interactions in an area of accelerating coal-bed methane production, Powder River Basin, Wyoming Geology 2002, 30, 923926.Google Scholar
Dahm, K. G., Guerra, K. L., Munakata-Marr, J., Drewes, J. E., Trends in water quality variability for coalbed methane produced water. Journal of Cleaner Production 2014, 84, 840848.Google Scholar
Cheung, K., Sanei, H., Klassen, P., Mayer, B., Goodarzi, F., Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada: trace element and rare earth element geochemistry. International Journal of Coal Geology 2009, 77 (3), 338349.Google Scholar
Healy, R. W., Rice, C. A., Bartos, T. T., McKinley, M. P., Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: evolution of water and sediment chemistry. Water Resources Research 2008, 44 (6).Google Scholar
Davis, W. N., Bramblett, R. G., Zale, A. V., Endicott, C. L., A review of the potential effects of coal bed natural gas development activities on fish assemblages of the Powder River Geologic Basin. Reviews in Fisheries Science 2009, 17 (3), 402422.Google Scholar
Farag, A., Harper, D. D., Senecal, A., Hubert, W. A., Potential effects of coalbed natural gas development on fish and aquatic resources. In Coalbed Natural Gas: Energy and Environment, Reddy, K. J., ed. Nova Science Publishers: 2010, pp. 227242.Google Scholar
Dauwalter, D. C., Wenger, S. J., Gelwicks, K. R., Fesenmyer, K. A., Land use associations with distributions of declining native fishes in the Upper Colorado River Basin. Transactions of the American Fisheries Society 2011, 140 (3), 646658.Google Scholar
Singh, U., Colosi, L. M, Water–energy sustainability synergies and health benefitsas means to motivate potable reuse of coalbed methane-produced waters. Ambio 2019, 48, 752768.Google Scholar
Li, G.-H., Sjursen, H. P., Characteristics of produced water during coalbed methane (CBM) development and its feasibility as irrigation water in Jincheng, China. Journal of Coal Science and Engineering (China) 2013, 19 (3), 369374.Google Scholar
Lester, J. P., Federalism and state environmental policy. In Environmental Politics and Policy: Theories and Evidence, Lester, J. P., ed. Duke University Press: 1977, pp. 3962.Google Scholar
US Congress, Energy Policy Act 2005. U.S. Congress: 2005.Google Scholar
Zirogiannis, N., Alcorn, J., Rupp, J., Carley, S., Graham, J. D., State regulation of unconventional gas development in the U.S.: an empirical evaluation. Energy Research & Social Science 2016, 11, 142154.Google Scholar
Christopherson, S., Rightor, N., How shale gas extraction affects drilling localities: lessons for regional and city policy makers. Journal of Town & City Management 2012, 2, 120.Google Scholar
Richardson, N., Gottlieb, M., Krupnick, A., Wiseman, H., The State of State Shale Gas Regulation. Resources for the Future: 2013.Google Scholar
Litzow, E., Neville, K. J., Johnson-King, B., Weinthal, E., Why does industry structure matter for unconventional oil and gas development? Examining revenue sharing outcomes in North Dakota. Energy Research & Social Science 2018, 44, 371384.Google Scholar
McFeeley, M., State Hydraulic Fracturing Disclosure Rules and Enforcement: A Comparison. Natural Resources Defense Council: 2012.Google Scholar
Wiseman, H., The Private Role in Public Fracturing Disclosure and Regulation. Harvard Business Law Review Online: 2013.Google Scholar
Pi, G., Dong, X., Dong, C., Guo, J., Ma, Z., The status, obstacles and policy recommendations of shale gas development in China. Sustainability 2015, 7 (3), 23532372.Google Scholar
Lin, A., Replacing coal with shale gas: could reducing China’s regional air pollution lead to more local pollution in rural China? In The Shale Dilemma: Political, Economic and Scientific Issues behind the “Fracking” Debate in Global Perspective, Gamper-Rabindran, S., ed. University of Pittsburgh Press: 2017.Google Scholar
UN Department of Economic and Social Affairs Population Dynamics, Population Division World Population Prospects 2019, Online Edition. Rev. 1. https://population.un.org/wpp/Download/Standard/Population/.Google Scholar
World Economic Forum, These 12 Charts Show How the World’s Population Has Exploded in the Last 200 Years. www.weforum.org/agenda/2019/07/populations-around-world-changed-over-the-years.Google Scholar
Gleick, P. A. I. C. Water, Security, and Conflict. World Resource Institute: 2018.Google Scholar
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., Wiberg, D., Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development 2016, 9 (1), 175222.Google Scholar
Wada, Y., van Beek, L. P. H., Wanders, N., Bierkens, M. F. P., Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters 2013, 8 (3), 034036.Google Scholar
Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., Hanasaki, N., Masaki, Y., Portmann, F. T., Stacke, T., Tessler, Z., Schewe, J., Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters 2013, 40 (17), 46264632.Google Scholar
Fischer, G., Tubiello, F. N., van Velthuizen, H., Wiberg, D. A., Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technological Forecasting and Social Change 2007, 74 (7), 10831107.Google Scholar
Somanathan, E., Taming the anarchy: groundwater governance in South Asia. Indian Growth and Development Review 2010, 3 (1), 9294.Google Scholar
Rodell, M., Velicogna, I., Famiglietti, J. S., Satellite-based estimates of groundwater depletion in India. Nature 2009, 460 (7258), 9991002.Google Scholar
Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., Vengosh, A., Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Science of the Total Environment 2019, 688, 12161227.Google Scholar
Dai, A., Drought under global warming: a review. WIREs Climate Change 2011, 2 (1), 4565.Google Scholar
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., Wisser, D., Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences 2014, 111 (9), 32513256.Google Scholar
Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., Stakhiv, E. Z., Water resources implications of global warming: a US regional perspective. Climatic Change 1999, 43 (3), 537579.Google Scholar
Buhaug, H., Climate–conflict research: some reflections on the way forward. WIREs Climate Change 2015, 6 (3), 269275.Google Scholar
Buhaug, H., Climate not to blame for African civil wars. Proceedings of the National Academy of Sciences 2010, 107 (38), 1647716482.Google Scholar
Daoudy, M., The Origins of the Syrian Conflict: Climate Change and Human Security. Cambridge University Press: 2020.Google Scholar
Alova, G., A global analysis of the progress and failure of electric utilities to adapt their portfolios of power-generation assets to the energy transition. Nature Energy 2020, 5, 920–927.Google Scholar
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., Kabat, P., Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 2014, 111 (9), 32453250.Google Scholar
Gosling, S. N., Arnell, N. W., A global assessment of the impact of climate changeon water scarcity. Climatic Change 2016, 134, 371385.Google Scholar
Mekonnen, M. M., Hoekstra, A. Y., Four billion people facing severe water scarcity. Science Advances 2016, 2 (2), e1500323.Google Scholar
Barnett, T. P., Adam, J. C., Lettenmaier, D. P., Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438 (7066), 303309.Google Scholar
Jiménez Cisneros, B. E., Oki, T., Arnell, N. W., Benito, G., Cogley, J. G., Jiang, D. T., Mwakalila, S. S., Freshwater resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: 2014, pp. 229269.Google Scholar
National Centers for Environmental Information, Global Temperature and Precipitation Maps. www.ncdc.noaa.gov/temp-and-precip/global-maps/.Google Scholar
Wakeel, M., Chen, B., Hayat, T., Alsaedi, A., Ahmad, B., Energy consumption for water use cycles in different countries: a review. Applied Energy 2016, 178, 868885.Google Scholar
Escobar, I. C., Schäfer, A., Sustainable Water for the Future, Volume 2 – Water Recycling versus Desalination. Elsevier: 2017.Google Scholar
Shahzad, M. W., Burhan, M., Ghaffour, N., Ng, K. C., A multi evaporator desalination system operated with thermocline energy for future sustainability. Desalination 2018, 435, 268277.Google Scholar
Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., Kang, S.-m., The state of desalination and brine production: a global outlook. Science of the Total Environment 2019, 657, 13431356.Google Scholar
Shahzad, M. W., Burhan, M., Ang, L., Ng, K. C., Energy–water–environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 5264.Google Scholar
International Energy Agency (IEA), Offshore Energy Outlook. International Energy Agency (IEA): 2018.Google Scholar
US Energy Information Administration (EIA), Offshore Production Nearly 30% of Global Crude Oil Output in 2015. www.eia.gov/todayinenergy/detail.php?id=28492.Google Scholar
European Environment Agency, EN10 – Residues from Combustion of Coal for Energy Production. www.eea.europa.eu/data-and-maps/indicators/en10-residues-from-combustion-of/residues-from-combustion-of-coal.Google Scholar
Qian, G., Li, Y., Acid and metalliferous drainage – a global environmental issue. Journal of Mining and Mechanical Engineering 2019, 1, 14.Google Scholar
Naidu, G., Ryu, S., Thiruvenkatachari, R., Choi, Y., Jeong, S., Vigneswaran, S., A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution 2019, 247, 11101124.Google Scholar
National Oceanic and Atmospheric Administration (NOAA), Climate Change: Annual Greenhouse Gas Index. www.climate.gov/news-features/understanding-climate/climate-change-annual-greenhouse-gas-index.Google Scholar
NOAA Global Monitoring Laboratory, Trends in Atmospheric Carbon Dioxide. www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html.Google Scholar
National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2019. www.ncdc.noaa.gov/sotc/global/201913.Google Scholar
Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., Zachos, J. C., Target atmospheric CO: where should humanity aim? The Open Atmospheric Science Journal 2008, 2, 217231.Google Scholar
US Energy Information Administration (EIA), Energy and the Environment Explained: Where Greenhouse Gases Come From. www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php.Google Scholar
Leduc, M., Matthews, H. D., de Elía, R., Regional estimates of the transient climate response to cumulative CO2 emissions. Nature Climate Change 2016, 6 (5), 474478.Google Scholar
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., Meinshausen, N., Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458 (7242), 11631166.Google Scholar
Zickfeld, K., MacDougall, A. H., Matthews, H. D., On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environmental Research Letters 2016, 11 (5), 055006.Google Scholar
Belmont, E. L., Davidson, F. T., Glazer, Y. R., Beagle, E. A., Webber, M. E., Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses. Environmental Research Letters 2017, 12 (9), 094019.Google Scholar
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., The global methane budget 2000–2017. Earth System Science Data 2020, 12, 15611623.Google Scholar
Dlugokencky, E. J. Trends in Atmospheric Methane. www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.Google Scholar
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J. M. H., Jones, C., Le Quér, é, Myneni, C., Piao, R. B., Thornton, S., , P. Carbon and Other Biogeochemical Cycles. Cambridge University Press: 2013.Google Scholar
Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., Walker, T. W., Houweling, S., Röckmann, T., Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nature Communications 2017, 8 (1), 2227.Google Scholar
Cloy, J. M., Smith, K. A., Greenhouse gas sources and sinks. In Encyclopedia of the Anthropocene, Dellasala, D. A., Goldstein, M. I., eds. Elsevier: 2018, pp. 391400.Google Scholar
Turner, A. J., Frankenberg, C., Kort, E. A., Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences 2019, 116 (8), 28052813.Google Scholar
Kort, E. A., Smith, M. L., Murray, L. T., Gvakharia, A., Brandt, A. R., Peischl, J., Ryerson, T. B., Sweeney, C., Travis, K., Fugitive emissions from the Bakken Shale illustrate role of shale production in global ethane shift. Geophysical Research Letters 2016, 43 (9), 46174623.Google Scholar
Lan, X., Talbot, R., Laine, P., Torres, A., Characterizing fugitive methane emissions in the Barnett Shale area using a mobile laboratory. Environmental Science & Technology 2015, 49 (13), 81398146.Google Scholar
Rella, C. W., Tsai, T. R., Botkin, C. G., Crosson, E. R., Steele, D., Measuring emissions from oil and natural gas well pads using the mobile flux plane technique. Environmental Science & Technology 2015, 49 (7), 47424748.Google Scholar
Robertson, A. M., Edie, R., Snare, D., Soltis, J., Field, R. A., Burkhart, M. D., Bell, C. S., Zimmerle, D., Murphy, S. M., Variation in methane emission rates from well pads in four oil and gas basins with contrasting production volumes and compositions. Environmental Science & Technology 2017, 51 (15), 88328840.Google Scholar
Brandt, A. R., Heath, G. A., Cooley, D., Methane leaks from natural gas systems follow extreme distributions. Environmental Science & Technology 2016, 50 (22), 1251212520.Google Scholar
Zavala-Araiza, D., Alvarez, R. A., Lyon, D. R., Allen, D. T., Marchese, A. J., Zimmerle, D. J., Hamburg, S. P., Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nature Communications 2017, 8 (1), 14012.Google Scholar
Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., Seinfeld, J. H., Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences 2013, 110 (44), 1776817773.Google Scholar
Lamb, B. K., Edburg, S. L., Ferrara, T. W., Howard, T., Harrison, M. R., Kolb, C. E., Townsend-Small, A., Dyck, W., Possolo, A., Whetstone, J. R., Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environmental Science & Technology 2015, 49 (8), 51615169.Google Scholar
Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., Lerner, B. M., Nadkarni, R., Neuman, J. A., Nowak, J. B., Trainer, M., Warneke, C., Parrish, D. D., Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus Shale gas production regions. Journal of Geophysical Research: Atmospheres 2015, 120 (5), 21192139.Google Scholar
Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., Cambaliza, M. O. L., Sweeney, C., Karion, A., Davis, K. J., Stirm, B. H., Montzka, S. A., Miller, B. R., Toward a better understanding and quantification of methane emissions from shale gas development. Proceedings of the National Academy of Sciences 2014, 111 (17), 62376242.Google Scholar
Smith, M. L., Gvakharia, A., Kort, E. A., Sweeney, C., Conley, S. A., Faloona, I., Newberger, T., Schnell, R., Schwietzke, S., Wolter, S., Airborne quantification of methane emissions over the Four Corners region. Environmental Science & Technology 2017, 51 (10), 58325837.Google Scholar
Schwietzke, S., Pétron, G., Conley, S., Pickering, C., Mielke-Maday, I., Dlugokencky, E. J., Tans, P. P., Vaughn, T., Bell, C., Zimmerle, D., Wolter, S., King, C. W., White, A. B., Coleman, T., Bianco, L., Schnell, R. C., Improved mechanistic understanding of natural gas methane emissions from spatially resolved aircraft measurements. Environmental Science & Technology 2017, 51 (12), 72867294.Google Scholar
Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Miles, N. L., Richardson, S. J., Cao, Y., Sweeney, C., Karion, A., Smith, M., Kort, E. A., Schwietzke, S., Murphy, T., Cervone, G., Martins, D., Maasakkers, J. D., Quantifying methane emissions from natural gas production in north-eastern Pennsylvania. Atmospheric Chemistry and Physics 2017, 17 (22), 1394113966.Google Scholar
Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer, M., Zamora, R., Conley, S., Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters 2013, 40 (16), 43934397.Google Scholar
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., Hamburg, S. P., Assessment of methane emissions from the US oil and gas supply chain. Science 2018, 361 (6398), 186188.Google Scholar
Ingraffea, A. R., Wawrzynek, P. A., Santoro, R., Wells, M., Reported methane emissions from active oil and gas wells in Pennsylvania, 2014–2018. Environmental Science & Technology 2020, 54 (9), 57835789.Google Scholar
Allan, W., Struthers, H., Lowe, D. C., Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research: Atmospheres 2007, 112 (D4).Google Scholar
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., White, J. W. C., A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 2016, 352 (6281), 8084.Google Scholar
Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., Canadell, J. G., The growing role of methane in anthropogenic climate change. Environmental Research Letters 2016, 11 (12), 120207.Google Scholar
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., Dlugokencky, E., Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature 2020, 578 (7795), 409412.Google Scholar
Kang, M., Christian, S., Celia, M. A., Mauzerall, D. L., Bill, M., Miller, A. R., Chen, Y., Conrad, M. E., Darrah, T. H., Jackson, R. B., Identification and characterization of high methane-emitting abandoned oil and gas wells. Proceedings of the National Academy of Sciences 2016, 113 (48), 1363613641.Google Scholar
Davenport, C. Trump Eliminates Major Methane Rule, Even as Leaks Are Worsening. www.nytimes.com/2020/08/13/climate/trump-methane.html.Google Scholar
Brownlow, R., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M., White, B., Wooster, M. J., Zhang, T., Nisbet, E. G., Isotopic ratios of tropical methane emissions by atmospheric measurement. Global Biogeochemical Cycles 2017, 31 (9), 14081419.Google Scholar
Sherwood, O. A., Schwietzke, S., Arling, V. A., Etiope, G., Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth Syst. Sci. Data 2017, 9 (2), 639656.Google Scholar
Stanislaw, J., Yergin, D., Oil: reopening the door. Foreign Affairs 1993, 72, 8193Google Scholar
US Department of Energy, Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts. US Department of Energy: 2019.Google Scholar
Osofsky, H. M., Climate change and environmental justice: reflections on litigation over oil extraction and rights violations in Nigeria. Journal of Human Rights and the Environment 2012, 1, 189210.Google Scholar
Collins, R., Adams-Heard, R. Flaring, or Why So Much Gas Is Going Up in Flames. www.bloombergquint.com/quicktakes/flaring-or-why-so-much-gas-is-going-up-in-flames-quicktake.Google Scholar
International Energy Agency (IEA), Flaring Emmissions. www.iea.org/reports/flaring-emissions.Google Scholar
Cushing, L. J., Vavra-Musser, K., Chau, K., Franklin, M., Johnston, J. E., Flaring from unconventional oil and gas development and birth outcomes in the Eagle Ford Shale in South Texas. Environmental Health Perspectives 2020, 128 (7), 077003.Google Scholar
Johnston, J. E., Chau, K., Franklin, M., Cushing, L., Environmental justice dimensions of oil and gas flaring in South Texas: disproportionate exposure among Hispanic communities. Environmental Science & Technology 2020, 54 (10), 62896298.Google Scholar
Seiyaboh, E. I., Izah, S. C., A review of impacts of gas flaring on vegetation and water resources in the Niger Delta region of Nigeria. International Journal of Economy, Energy and Environment 2017, 2, 4855.Google Scholar
Glazer, Y. R., Kjellsson, J. B., Sanders, K. T., Webber, M. E., Potential for using energy from flared gas for on-site hydraulic fracturing wastewater treatment in Texas. Environmental Science & Technology Letters 2014, 1 (7), 300304.Google Scholar
Kar, A., Bahadur, V., Using excess natural gas for reverse osmosis-based flowback water treatment in US shale fields. Energy 2020, 196, 117145.Google Scholar
US Environmental Protection Agency, Frequent, Routine Flaring May Cause Excessive, Uncontrolled Sulfur Dioxide Releases. US Environmental Protection Agency (EPA): 2000.Google Scholar
Eman, E. A., Gas flaring in industry: an overview. Petroleum and Coal 2015, 57, 532555.Google Scholar
Sorrels, J. L., Bradley, K., Randall, D., Flares. RTI International: 2019.Google Scholar
Soltanieh, M., Zohrabian, A., Gholipour, M. J., Kalnay, E., A review of global gas flaring and venting and impact on the environment: case study of Iran. International Journal of Greenhouse Gas Control 2016, 49, 488509.Google Scholar
The World Bank, Global Gas Flaring Tracker Report. The World Bank: 2020.Google Scholar
US Department of Energy, North Dakota Natural Gas Flaring and Venting Regulations. US Department of Energy: 2019.Google Scholar
US Energy Information Administration (EIA), Natural Gas Venting and Flaring Increased in North Dakota and Texas in 2018. www.eia.gov/todayinenergy/detail.php?id=42195.Google Scholar
Rystad Energy, A Downturn Silver Lining: Permian Gas Flaring Has Decreased and Is Expected to Fall Further in 2020. www.rystadenergy.com/newsevents/news/press-releases/a-downturn-silver-lining-permian-gas-flaring-has-decreased-and-is-expected-to-fall-further-in-2020/.Google Scholar
Franklin, M., Chau, K., Cushing, L. J., Johnston, J. E., Characterizing flaring from unconventional oil and gas operations in South Texas using satellite observations. Environmental Science & Technology 2019, 53 (4), 22202228.Google Scholar
Environmental Defense Fund, Helicopter Surveys Indicate Malfunctioning Flares in the Permian Basin Are Releasing at Least 300,000 Metric Tons of Unburned Methane a Year. www.edf.org/media/helicopter-surveys-indicate-malfunctioning-flares-permian-basin-are-releasing-least-300000.Google Scholar
Eman, E. A., Environmental pollution and measurement of gas flaring. International Journal of Scientific Research in Science, Engineering and Technology 2016, 2, 252262.Google Scholar
Fawole, O. G., Cai, X. M., MacKenzie, A. R., Gas flaring and resultant air pollution: a review focusing on black carbon. Environmental Pollution 2016, 216, 182197.Google Scholar
Mirrezaei, M. A., Orkomi, A. A., Gas flares contribution in total health risk assessment of BTEX in Asalouyeh, Iran. Process Safety and Environmental Protection 2020, 137, 223237.Google Scholar
Rim-Rukeh, A., Ikiafa, G. O., Okokoyo, P. A., Monitoring air pollutants due to gas flaring using rain water Global Journal of Environmental Sciences 2005, 4, 123126Google Scholar
Anejionu, O. C. D., Whyatt, J. D., Blackburn, G. A., Price, C. S., Contributions of gas flaring to a global air pollution hotspot: spatial and temporal variations, impacts and alleviation. Atmospheric Environment 2015, 118, 184193.Google Scholar
Amadi, A. N., Impact of gas-flaring on the quality of rain water, groundwater and surface water in parts of Eastern Niger Delta, Nigeria. Journal of Geosciences and Geomatics 2014, 2, 114119.Google Scholar
Alani, R., Nwude, D., Joseph, A., Akinrinade, O., Impact of gas flaring on surface and underground water: a case study of Anieze and Okwuibome areas of Delta State, Nigeria. Environmental Monitoring and Assessment 2020, 192 (3), 166.Google Scholar
Nwankwo, C. N., Ogagarue, D. O., Effects of gas flaring on surface and ground waters in Delta State Nigeria. Journal of Geology and Mining Research 2011, 3, 131136.Google Scholar
Raimi, M., Ezugwu, S. C., An assessment of trace elements in surface and ground water quality in the Ebocha-Obrikom oil and gas producing area of Rivers State, Nigeria. International Journal of Scientific & Engineering Research 2017, 2.Google Scholar
Emumejaye, K., Effects of gas flaring on surface and ground water in Irri town and environs, Niger-Delta, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology 2012, 1, 2933.Google Scholar
Ighalo, J. O., Adeniyi, A. G., A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere 2020, 260, 127569.Google Scholar
Deutsche Welle, Gas Flaring Continues Scorching Niger Delta. www.dw.com/en/gas-flaring-continues-scorching-niger-delta/a-46088235.Google Scholar
Friedman, L. Trump Administration Formally Rolls Back Rule Aimed at Limiting Methane Pollution. www.nytimes.com/2018/09/18/climate/trump-methane-rollback.html.Google Scholar
Baltz, T., Colorado in Landmark Rule Moves to End Routine Flaring, Venting. Bloomberg Law 2020.Google Scholar
US Department of Energy, State-Level Natural Gas Flaring and Venting Regulations. www.energy.gov/fe/state-level-natural-gas-flaring-and-venting-regulations.Google Scholar
Tabuchi, H. Despite Their Promises, Giant Energy Companies Burn Away Vast Amounts of Natural Gas. www.nytimes.com/2019/10/16/climate/natural-gas-flaring-exxon-bp.html.Google Scholar
Clayton, R, Review of Current Knowledge: Desalination for Water Supply. Foundation for Water Reserach: 2011, www.fwr.org/desal.pdf.Google Scholar
Sanders, K. T., Webber, M. E., Evaluating the energy consumed for water use in the United States. Environmental Reserach Letters 2012, 7, 034034.Google Scholar
Copeland, C., Carter, N. T., Energy Water Nexus: The Water Sector’s Energy Use. Congressional Research Service: 2017.Google Scholar
Longo, S., d’Antoni, B. M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J. M., Mauricio-Iglesias, M., Soares, A., Hospido, A., Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy 2016, 179, 12511268.Google Scholar
Elimelech, M., Phillip, W. A., The future of seawater desalination: energy, technology, and the environment. Science 2011, 333 (6043), 712717.Google Scholar
Shemer, H., Semiat, R., Sustainable RO desalination – energy demand and environmental impact. Desalination 2017, 424, 1016.Google Scholar
Kloppmann, W., Vengosh, A., Guerrot, C., Millot, R., Pankratov, I., Isotope and ion selectivity in reverse osmosis desalination: geochemical tracers for man-made freshwater. Environmental Science & Technology 2008, 42 (13), 47234731.Google Scholar
Friedler, E., Lahav, O., Jizhaki, H., Lahav, T., Study of urban population attitudes towards various wastewater reuse options: Israel as a case study. Journal of Environmental Management 2006, 81 (4), 360370.Google Scholar
Borokhov Akerman, E., Simhon, V., Gitis, M., , V., Advanced treatment options to remove boron from seawater. Desalination and Water Treatment 2012, 46 (1–3), 285294.Google Scholar
Segal, H., Birnhack, L., Nir, O., Lahav, O., Intensification and energy minimization of seawater reverse osmosis desalination through high-pH operation: temperature dependency and second pass implications. Chemical Engineering and Processing – Process Intensification 2018, 131, 8491.Google Scholar
Nir, O., Lahav, O., Coupling mass transport and chemical equilibrium models for improving the prediction of SWRO permeate boron concentrations. Desalination 2013, 310, 8792.Google Scholar
Birnhack, L., Voutchkov, N., Lahav, O., Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water – a review. Desalination 2011, 273 (1), 622.Google Scholar
Nir, O., Lahav, O., Single SWRO pass boron removal at high pH: prospects and challenges. In Boron Separation Processes, Kabay, N., Bryjak, M., Hilal, N., eds. Elsevier: 2015, pp. 297323.Google Scholar
Vinson, D. S., Schwartz, H. G., Dwyer, G. S., Vengosh, A., Evaluating salinity sources of groundwater and implications for sustainable reverse osmosis desalination in coastal North Carolina, USA. Hydrogeology Journal 2011, 19 (5), 981994.Google Scholar
Catling, L., Abubakar, I., Lake, I., Swift, L., Hunter, P., Review of Evidence for Relationship between Incidence of Cardiovascular Disease and Water Hardness. University of East Anglia and Drinking Water Inspectorate: 2005.Google Scholar
World Health Organization, Calcium and Magnesium in Drinking Water: Public Health Significance. World Health Organization: 2009.Google Scholar
Rosborg, I., Nihlga˚, B., Gerhardsson, L., Sverdrup, H., Concentrations of inorganic elements in 20 municipal waters in Sweden before and after treatment – links to human health. Environmental Geochemistry and Health 2006, 28, 215229.Google Scholar
Sedlak, D. L., The unintended consequences of the reverse osmosis revolution. Environmental Science & Technology 2019, 53, 39994000.Google Scholar
Jiang, L. H., Chen, P., Liu, J., Liu, Y., Qin, D., Tan, G., , N., Magnesium levels in drinking water and coronary heart disease mortality risk: a meta-analysis. Nutrients 2016, 8, 5.Google Scholar
Calderon, R., Hunter, P., Epidemiological studies and the association of cardiovascular disease risks with water hardness. In Calcium and Magnesium in Drinking-Water. Public Health Significance, Cortuvo, J., Bartram, J., eds. World Health Organization: 2009, pp. 110144.Google Scholar
Catling, L. A., Abubakar, I., Lake, I. R., Swift, L., Hunter, P. R., A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. Journal of Water and Health 2008, 6 (4), 433442.Google Scholar
Kozisek, F., Regulations for calcium, magnesium or hardness in drinking water in the European Union member states. Regulatory Toxicology and Pharmacology 2020, 112, 104589.Google Scholar
Yang, C.-Y., Chiu, H.-F., Calcium and magnesium in drinking water and the risk of death from hypertension. American Journal of Hypertension 1999, 12 (9), 894899.Google Scholar
Ben Zaken, S., Simantov, O., Abenstein, A., Radomysky, Z., Koren, G., Water desalination, serum magnesium and dementia: a population-based study. Journal of Water and Health 2020, 18 (5), 722–727.Google Scholar
Koren, G., Shlezinger, M., Katz, R., Shalev, V., Amitai, Y., Seawater desalination and serum magnesium concentrations in Israel. Journal of Water and Health 2016, 15 (2), 296299.Google Scholar
Shlezinger, M., Amitai, Y., Akriv, A., Gabay, H., Shechter, M., Leventer-Roberts, M., Association between exposure to desalinated sea water and ischemic heart disease, diabetes mellitus and colorectal cancer: a population-based study in Israel. Environmental Research 2018, 166, 620627.Google Scholar
Shlezinger, M., Amitai, Y., Goldenberg, I., Shechter, M., Desalinated seawater supply and all-cause mortality in hospitalized acute myocardial infarction patients from the Acute Coronary Syndrome Israeli Survey 2002–2013. International Journal of Cardiology 2016, 220, 544550.Google Scholar
Rosen, V. V., Garber, O. G., Chen, Y., Magnesium deficiency in tap water in Israel: the desalination era. Desalination 2018, 426, 8896.Google Scholar
Avni, N., Eben-Chaime, M., Oron, G., Optimizing desalinated sea water blending with other sources to meet magnesium requirements for potable and irrigation waters. Water Research 2013, 47 (7), 21642176.Google Scholar
Penn, R., Birnhack, L., Adin, A., Lahav, O., New desalinated drinking water regulations are met by an innovative post-treatment process for improved public health. Water Supply 2009, 9 (3), 225231.Google Scholar
Lesimple, A., Ahmed, F. E., Hilal, N., Remineralization of desalinated water: Methods and environmental impact. Desalination 2020, 496, 114692.Google Scholar
Huang, Y., Wang, J., Tan, Y., Wang, L., Lin, H., Lan, L., Xiong, Y., Huang, W., Shu, W., Low-mineral direct drinking water in school may retard height growth and increase dental caries in schoolchildren in China. Environment International 2018, 115, 104109.Google Scholar
Stein, S., Yechieli, Y., Shalev, E., Kasher, R., Sivan, O., The effect of pumping saline groundwater for desalination on the fresh–saline water interface dynamics. Water Research 2019, 156, 4657.Google Scholar
Russak, A., Sivan, O., Yechieli, Y., Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers. Chemical Geology 2016, 441, 3546.Google Scholar
Thurber, M. C., Coal. Polity Press: 2019.Google Scholar
Kuriakose, S., Lewis, J., Tamanini, J., Yusuf, S. Accelerating Innovation in China’s Solar, Wind and Energy Storage Sectors. World Bank Group: 2007.Google Scholar
Marshall, J. S., Renewables beat coal for first time in 130 years. www.eenews.net/greenwire/2020/05/28/stories/1063257289.Google Scholar
Brandt, J. E., Lauer, N. E., Vengosh, A., Bernhardt, E. S., Di Giulio, R. T., Strontium isotope ratios in fish otoliths as biogenic tracers of coal combustion residual inputs to freshwater ecosystems. Environmental Science & Technology Letters 2018, 5 (12), 718723.Google Scholar
International Energy Agency (IEA), Renewable 2020: Analysis and Forecast to 2025. International Energy Agency (IEA): 2020.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Avner Vengosh, Duke University, North Carolina, Erika Weinthal, Duke University, North Carolina
  • Book: Water Quality Impacts of the Energy-Water Nexus
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781107448063.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Avner Vengosh, Duke University, North Carolina, Erika Weinthal, Duke University, North Carolina
  • Book: Water Quality Impacts of the Energy-Water Nexus
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781107448063.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Avner Vengosh, Duke University, North Carolina, Erika Weinthal, Duke University, North Carolina
  • Book: Water Quality Impacts of the Energy-Water Nexus
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781107448063.007
Available formats
×