Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:35:44.994Z Has data issue: false hasContentIssue false

Chapter 7 - Volcanism and mass extinctions

Published online by Cambridge University Press:  14 November 2009

Paul B. Wignall
Affiliation:
School of Earth Sciences, University of Leeds, Leeds, LS2 9JT, UK
Joan Marti
Affiliation:
Institut de Ciències de la Terra 'Jaume Almera', Barcelona
Gerald G. J. Ernst
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Mass extinctions

Mass extinction events are brief intervals of geological time marked by the loss of numerous species from diverse environments around the globe. Around a dozen such events have been identified and the biggest, known as the “big five,” mark some of the main boundaries of the geological column. The most famous mass extinction is that which brought the 160 Ma reign of the dinosaurs to a close at the Cretaceous–Tertiary boundary: an event that is universally abbreviated to the K–T event (not C–T because this is an abbrevation for Cenomanian–Turonian, a stage boundary in the Upper Cretaceous which, incidentally, is also an extinction horizon). The other four major extinction events happened at the end of the Ordovician, within the Late Devonian, at the end of the Permian (this was the greatest of them all), and at the end of the Triassic (Hallam and Wignall, 1997).

Mass extinctions are of fundamental importance in the history of life because they often eliminate dominant groups from an environment thereby clearing the way for the radiation of previously minor groups. The best-known such changeover concerns the replacement of dinosaurs by mammals as the dominant terrestrial vertebrates in the aftermath of the K–T event. Both mammals and dinosaurs enjoyed a long evolutionary history prior to the end-Cretaceous calamity, but only the dinosaurs occupied the large terrestrial vertebrate niches. The complete extinction of dinosaurs allowed the mammals to evolve to the larger body sizes we see today.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. and Fürsich, F. T. 1996. Diversity analysis of Lower Jurassic bivalves of the Andean Basin and the Pliensbachian-Toarcian mass extinction. Lethaia, 29, 181–195CrossRefGoogle Scholar
Ali, J. R., Thompson, G. M., , Song X.-Y., et al. 2002. Emeishan Basalts (SW China) and the “end-Guadalupian” crisis: magnetobiostratigraphic constraints. Journal of the Geological Society of London, 159, 21–29CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., et al. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction: experimental results and theoretical interpretation. Science, 208, 1095–1108CrossRefGoogle Scholar
Alvarez, W., Smit, J., Lowrie, W., et al. 1992. Proximal impact deposits at the Cretaceous–Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20, 697–7002.3.CO;2>CrossRefGoogle ScholarPubMed
Archibald, J. D. 1996. Dinosaur Extinction and the End of an Era: What the Fossils Say. New York, Columbia University PressGoogle Scholar
Baksi, A. and Farrar, E. 1991. 40Ar/39 Ar dating of the Siberian Traps, USSR: evaluation of the ages of the two major extinction events relative to episodes of flood-basalt volcanism in the USSR and the Deccan Traps, India. Geology, 19, 461–4642.3.CO;2>CrossRefGoogle Scholar
Basu, A. R., Poreda, R. J., Renne, P. R., et al. 1995. High He-3 plume origin and temporal-spatial evolution of the Siberian flood basalts. Science, 269, 822–825CrossRefGoogle Scholar
Becker, R. T. and House, M. R. 1994. Kellwasser events and goniatite successions in the Devonian of the Montagne Noire with comments on possible causations. Courier For schungs institut Senckenberg, 16, 45–77Google Scholar
Benton, M. J. 1994. Late Triassic to Middle Jurassic extinctions among continentaltetrapods: testing the patterns. In , N. C. Fraser and , H.-D. Sues (eds.) In the Shadow of the Dinosaurs.Cambridge, UK, Cambridge University Press, pp. 366–397Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science, 268, 52–58CrossRefGoogle ScholarPubMed
Bowring, S. A., Erwin, D. H., Jin, Y., et al. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280, 1039–1045CrossRefGoogle ScholarPubMed
Bralower, T. J., Thomas, D. J., Zachos, J. C., et al. 1997. High resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link?Geology, 25, 963–9662.3.CO;2>CrossRefGoogle Scholar
Budyko, M. I. and Pivivariva, Z. I. 1967. The influence of volcanic eruptions on solar radiation incoming to the Earth's surface. Meteorologiya i Gidrologiya, 10, 3–7Google Scholar
Campbell, I. H. and Griffiths, R. W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99, 79–93CrossRefGoogle Scholar
Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., et al. 1992. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science, 258, 1760–1763CrossRefGoogle ScholarPubMed
Claoué-Long, J. C., Zhang, Z., Ma, G., et al. 1991. The age of the Permian–Triassic boundary. Earth and Planetary Science Letters, 105, 182–190CrossRefGoogle Scholar
Coffin, M. F. and Eldholm, O. 1993. Scratching the surface: estimating dimensions of large igneous provinces. Geology, 21, 515–5182.3.CO;2>CrossRefGoogle Scholar
Conaghan, P. J., Shaw, S. E., and Veevers, J. J. 1994. Sedimentary evidence of the Permian/Triassic global crisis induced by the Siberian hotspot. Memoir of the Canadian Society of Petroleum Geology, 17, 785–795Google Scholar
Courtillot, V. E. 1990. What caused the mass extinction? A volcanic eruption. Scientific American, 2634, 53–60Google Scholar
Courtillot, V. E. 1999. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge, UK, Cambridge University PressGoogle Scholar
Courtillot, V. E., Besse, J., Vandamme, D., et al. 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333, 843–846CrossRefGoogle Scholar
Cox, K. G. 1988. Gradual volcanic catastrophes?Nature, 333, 802CrossRefGoogle Scholar
Deckart, K., Féraud, G., and Bertrand, H. 1997. Age of Jurassic continental tholeiites of French Guyana, Surinam and Guinea: implications for the initial opening of the Central Atlantic Ocean. Earth and Planetary Science Letters, 150, 205–220CrossRefGoogle Scholar
Devine, J. D., Sigurdsson, H., and Davis, A. N. 1984. Major eruptions cause short-term global cooling because of sulphate aerosols. Journal of Geophysical Research, 89, 6309–6325CrossRefGoogle Scholar
Dickens, G. R., O'Neill, J. R., Rea, D. K., et al. 1995. Dissolution of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965CrossRefGoogle Scholar
Duncan, R. A., Hooper, P. R., Rehacek, J., et al. 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research, 102, 18127–18138CrossRefGoogle Scholar
Duncan, R. A. and Pyle, D. G. 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333, 841–843CrossRefGoogle Scholar
Eldholm, O. and Thomas, E. 1993. Environmental impact of volcanic margin formation. Earth and Planetary Science Letters, 117, 319–329CrossRefGoogle Scholar
Emeleus, C. H., Allwright, E. A., Kerr, A. C., et al. 1996. Red tuffs in the Palaeocene lava succession of the Inner Hebrides. Scottish Journal of Geology, 32, 83–89CrossRefGoogle Scholar
Ernst, R. E. and Buchan, H. L. 1997. Giant radiating dike swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In , J. J. Mahoney and , M. F. Coffin (eds.) Large Igneous Provinces, Monograph no. 100. Washington, DC, American Geophysical Union, pp. 297–334Google Scholar
Erwin, D. H. 1994. The Permo-Triassic extinction. Nature, 367, 231–236CrossRefGoogle Scholar
Faure, K., Wit, M. J., and Willis, J. P. 1995. Late Permian global coal hiatus linked to 13C-depleted CO2 flux into the atmosphere during the final consolidation of Pangea. Geology, 23, 507–5102.3.CO;2>CrossRefGoogle Scholar
Fitch, F. J. and Miller, J. A. 1984. Dating Karoo igneous rocks by the conventional K–Ar and 40Ar/39Ar age spectrum methods. Geological Societyof South Africa Special Publication, 13, 247–266Google Scholar
Garzanti, E. 1993. Himalayan ironstones, “superplumes,” and the breakup of Gondwana. Geology, 21, 105–1082.3.CO;2>CrossRefGoogle Scholar
Genin, A., Lazar, B., and Brenner, S. 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature, 377, 507–510CrossRefGoogle Scholar
Glen, W. (ed.) 1994. The Mass-Extinction Debates: How Science Works in a Crisis. Stanford, CA, Stanford University PressGoogle Scholar
Hallam, A. 1961. Cyclothers, transgressions and faunal change in the Lias of north west Europe. Transactions of the Edinburgh Geological Society, 18, 132–174CrossRefGoogle Scholar
Hallam, A. 1987. End-Cretaceous mass extinction event: argument for terrestrial conditions. Science, 238, 1237–1242CrossRefGoogle Scholar
Hallam, A. 1990. The end-Triassic mass extinction event. Geological Society of America Special Paper, 247, 577–583CrossRefGoogle Scholar
Hallam, A. 1996. Major bio-events in the Triassic and Jurassic. In , O. H. Walliser (ed.) Global Events and Event Stratigraphy.Berlin, Springer-Verlag, pp. 265–284Google Scholar
Hallam, A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to early Jurassic). Journal of the Geological Society of London, 154, 773–779CrossRefGoogle Scholar
Hallam, A. and Wignall, P. B. 1997. Mass Extinctions and their Aftermath. Oxford, UK, Oxford University PressGoogle Scholar
Hallam, A. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews, 48, 217–250CrossRefGoogle Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., et al. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxicevent. Nature, 406, 392–395CrossRefGoogle Scholar
Holser, W. T., Schönlaub, H. P., Boeckelmann, K., et al. 1991. The Permian–Triassic of the Gartnerkofel-1 Core (CarnicAlps, Austria): synthesis and conclusions. Abhandlungen der Geologischen Bundesanstalt, 45, 213–232Google Scholar
Isozaki, Y. 1994. Superanoxia across the Permo-Triassic boundary: recorded in accreted deep-sea pelagic chert in Japan. Memoir of the Canadian Society of Petroleum Geologists, 17, 805–812Google Scholar
Jaeger, J.-J., Courtillot, V., and Tapponier, P. 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India–Asia collision. Geology, 17, 316–3192.3.CO;2>CrossRefGoogle Scholar
Jaiprakash, B. C., Singh, J., and Raju, D. S. N. 1993. Foraminiferal events across the K/T boundary and age of Deccan volcanism in Palakollu area, Krishna–Godavari basin, India. Journal of the Geological Society of India, 41, 105–117Google Scholar
Jin, Y. and Shang, J. 2000. The Permian of China and its interregional correlation. Developments in Palaeontology and Stratigraphy, 18, 71–98CrossRefGoogle Scholar
Jin, Y., Zhang, J., and Shang, Q. 1994. Two phases of the end-Permian mass extinction, Canadian Society of Petroleum Geologists Memoir, 17, 813–822Google Scholar
Jones, A. P., Price, G. D., Price, N. J., et al. 2002. Impact induced melting and the development of large igneous provinces. Earth and Planetary Science Letters, 202, 551–561CrossRefGoogle Scholar
Kaiho, K. 1991. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Paleogeography, Paleoclimatology, Paleoecology, 83, 65–85CrossRefGoogle Scholar
Kamo, S. L., Czamanske, G. K., and Krogh, T. E. 1996. A minimum U–Pb age for Siberian flood basaltvolcanism. Geochimica Cosmochimica Acta, 60, 3505–3511CrossRefGoogle Scholar
Keith, M. L. 1982. Violent volcanism, stagnant oceans and some inferences regarding petroleum, strata-bound ores and mass extinctions. Geochimica Cosmochimica Acta, 46, 2621–2637CrossRefGoogle Scholar
Keller, G. 1996. The Cretaceous–Tertiary mass extinction in planktonic foraminifera: biotic constraints for catastrophe theories. In , N. Macleaod and , G. Keller (eds.) Cretaceous–Tertiary Mass Extinctions. New York, W. W. Norton, pp. 49–84Google Scholar
Kent, D. V. 1981. Asteroid extinction hypothesis. Science, 211, 648–650CrossRefGoogle ScholarPubMed
Kerr, A. C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary. Journal of the Geological Society of London, 155, 619–626CrossRefGoogle Scholar
Larson, R. L. 1991. Geological consequences of superplumes. Geology, 19, 963–9662.3.CO;2>CrossRefGoogle Scholar
Loper, D. E., McCartney, K., and Buznya, G. 1988. A model of correlated episodicity in magnetic-field reversals, climate, and mass extinctions. Journal of Geology, 96, 1–15CrossRefGoogle Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., et al. 1999. Extensive 200-million-year-old continental flood basalts of the central Atlantic magmatic province. Science, 284, 616–618CrossRefGoogle ScholarPubMed
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285, 1386–1390CrossRefGoogle ScholarPubMed
McLaren, D. J. 1970. Time, life, and boundaries. Journal of Paleontology, 44, 801–815Google Scholar
Mclean, D. M. 1985. Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research, 6, 235–259CrossRefGoogle Scholar
Officer, C. B. 1993. Victims of volcanoes. New Scientist, February 20, 34–38Google Scholar
Officer, C. B. and Drake, C. L. 1983. The Cretaceous–Tertiary transition. Science, 219, 1383–1390CrossRefGoogle ScholarPubMed
Officer, C. B., Hallam, A., Drake, C. L., et al. 1987. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature, 326, 143–149CrossRefGoogle Scholar
Olsen, P. E., Fowell, S. J., and Corent, B. 1990. The Triassic/Jurassic boundary in continental rocks of eastern North America: a progress report. Geological Society of America Special Paper, 247, 585–594CrossRefGoogle Scholar
Olsson, R. K. and Liu, C. 1993. Controversies on the placement of the Cretaceous–Palaeogene boundary and the K/P mass extinction of planktonic foraminifera. Palaios, 8, 127–139CrossRefGoogle Scholar
Pálfy, J. and Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology, 28, 747–7502.0.CO;2>CrossRefGoogle Scholar
Peate, D. W. 1997. The Paraná–Etendeka Province. In , J. J. Mahoney and , M. F. Coffin (eds.) Large Igneous Provinces, Monograph no. 100. Washington, DC, American Geophysical Union, pp. 217–245Google Scholar
Pope, K. O., Baines, K. H., Ocampo, A. C., et al. 1994. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth and Planetary Science Letters, 128, 719–725CrossRefGoogle Scholar
Prasad, G. V. R. and Khajuria, C. K. 1995. Implications of the infra- and inter-trappean biota from the Deccan, India, for the role of volcanism in Cretaceous–Tertiary boundary extinctions. Journal of the Geological Society of London, 152, 289–296CrossRefGoogle Scholar
Price, G. D., Ruffell, A. H., Jones, C. E., et al. 2000. Isotopic evidence for temperature variation during the early Cretaceous (Late Ryazanian – mid-Hauterivian). Journal of the Geological Society of London, 157, 335–343CrossRefGoogle Scholar
Racki, G. 1998. Frasnian–Famennian biotic crisis: undervalued tectonic control?Paleogeography, Paleoclimatology, Paleoecology, 141, 171–198CrossRefGoogle Scholar
Rampino, M. R. 1987. Impact cratering and flood basalt volcanism. Nature, 327, 468CrossRefGoogle Scholar
Rampino, M. R. and Stothers, R. B. 1988. Flood basalt volcanism during the past 250 million years. Science, 241, 663–668CrossRefGoogle ScholarPubMed
Raup, D. M. and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geological past. Proceedings of the National Academy of Sciences of the USA, 81, 801–805CrossRefGoogle Scholar
Reichow, M. K., Saunders, A. D., White, R. V., et al. 2002. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science, 296, 1846–1849CrossRefGoogle ScholarPubMed
Renne, P. R. and Basu, A. R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science, 253, 176–179CrossRefGoogle ScholarPubMed
Renne, P. R., Zhang, Z., Richards, M. A., et al. 1995. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science, 269, 1413–1416CrossRefGoogle ScholarPubMed
Retallack, G. J. 1995. Permian–Triassic life crisis on land. Science, 267, 77–80CrossRefGoogle ScholarPubMed
Retallack, G. J. 1997. Palaeosols in the Upper Narrabeen Group of New South Wales as evidence of Early Triassic palaeoenvironments without exact modern analogues. Australian Journal of Earth Sciences, 44, 185–201CrossRefGoogle Scholar
Ruffell, A. H. and Rawson, P. F. 1994. Palaeoclimate control on sequence stratigraphic patterns in the late Jurassic to mid-Cretaceous, with a case study from Eastern England. Paleogeography, Paleoclimatology, Paleoecology, 110, 43–54CrossRefGoogle Scholar
Saunders, A. D., Fitton, J. G., Kerr, A. C., et al. 1997. The North Atlantic Igneous Province. In , J. J. Mahoney and , M. F. Coffin (eds.) Large Igneous Provinces, Monograph no. 100. Washington, DC, American Geophysical Union, pp. 45–93Google Scholar
Self, S., Thordarson, T., and Keszthelyi, L. 1997. Emplacement of continental flood basalt lava flows. In , J. J. Mahoney and , M. F. Coffin (eds.) Large Igneous Provinces, Monograph no. 100. Washington, DC, American Geophysical Union, pp. 381–410Google Scholar
Sharma, M. 1997. Siberian Traps. In , J. J. Mahoney and , M. F. Coffin (eds.) Large Igneous Provinces, Monograph no. 100. Washington, DC, American Geophysical Union, pp. 273–295Google Scholar
Sheehan, P. M., Fastovsky, D. E., Hoffman, R. G., et al. 1991. Sudden extinction of the dinosaurs: latest Cretaceous, upper Great Plains, USA. Science, 254, 835–839CrossRefGoogle ScholarPubMed
Sigurdsson, H. 1982. Volcanic pollution and climate: the 1783 Laki eruption. Eos, 63, 601–602CrossRefGoogle Scholar
Sigurdsson, H. 1990. Evidence for volcanic loading of the atmosphere and climatic response. Paleogeography, Paleoclimatology, Paleoecology, 89, 277–289CrossRefGoogle Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper, 190, 329–352CrossRefGoogle Scholar
Stanley, S. M. and Yang, X. 1994. A double mass extinction at the end of the Paleozoic era. Science, 266, 1340–1344CrossRefGoogle ScholarPubMed
Stothers, R. B. 1993. Flood basalts and extinction events. Geophysics Research Letters, 20, 1399–1402CrossRefGoogle Scholar
Stothers, R. B., Wolff, J. A., Self, S., et al. 1986. Basaltic fissure eruptions, plume heights, and atmospheric aerosols. Geophysics Research Letters, 13, 725–728CrossRefGoogle Scholar
Sutherland, F. L. 1994. Volcanism around K/T boundary time: its role in an impact scenario for the K/T extinction events. Earth Science Reviews, 36, 1–26CrossRefGoogle Scholar
Thordarson, T., Self, S., Oskarsson, N., et al. 1996. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin of Volcanology, 58, 205–225CrossRefGoogle Scholar
Veevers, J. J., Conaghan, P. J., and Shaw, S. E. 1994. Turning point in Pangean environmental history at the Permian/Triassic (P/Tr) boundary. Geological Society of America Special Paper, 288, 187–196CrossRefGoogle Scholar
Venkatesan, T. R., Kumar, A., Gopalan, K., et al. 1997. 40Ar–39Ar age of Siberian basaltic volcanism. Chemical Geology, 138, 303–310CrossRefGoogle Scholar
Vianey-Liaud, M., Jain, S. L., and Sahni, A. 1987. Dinosaur egg shells (Saurischia) from the Late Cretaceous Intertrappean and Lameta Formations (Deccan, India). Journal of Vertebrate Paleontology, 7, 408–424CrossRefGoogle Scholar
Weems, R. E. and Olsen, P. E. 1997. Synthesis and revision of groups within the Newark Supergroup, eastern North America. Geological Society of America Bulletin, 109, 195–2092.3.CO;2>CrossRefGoogle Scholar
Westphal, M., Gurevitch, E. L., Sansanov, B. V., et al. 1998. Magnetostratigraphy of the lower Triassic volcanics from deep drill SG6 in western Siberia: evidence for long-lasting Permo-Triassic volcanic activity. Geophysical Journal International, 134, 254–266CrossRefGoogle Scholar
White, R. S. 1989. Igneous outbursts and mass extinctions. Eos, 1480–1482CrossRefGoogle Scholar
Widdowson, M., Walsh, J. N., and Subbarao, K. V. 1997. The geochemistry of Indian bole horizons: palaeoenvrionmental implications of Deccan intravolcanic surfaces. Geological Society of London Special Publication, 120, 269–281CrossRefGoogle Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1–33CrossRefGoogle Scholar
Wignall, P. B. and Twitchett, R. J. 1996. Oceanic anoxia and the End Permian mass extinction. Science, 272, 1155–1158CrossRefGoogle ScholarPubMed
Wilson, M. and Lyashkevich, Z. M. 1996. Magmatism and the geodynamics of rifting of the Pripyat–Dnieper–Donets rift, East European Platform. Tectonophysics, 268, 65–81CrossRefGoogle Scholar
Wolbach, W. S., Gilmour, I., and Anders, E. 1990. Major wildfires at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper, 247, 391–400CrossRefGoogle Scholar
Woods, A. W. 1993. A model of plumes above basaltic fissure eruptions. Geophysical Research Letters, 20, 1115–1118CrossRefGoogle Scholar
Yin, H., Huang, S., Zhang, K., et al. 1992. The effects of volcanism on the Permo-Triassic mass extinction in South China. In , W. C. Sweetet al. (eds.) Permo-Triassic Events in the Eastern Tethys.Cambridge, UK, Cambridge University Press, pp. 146–157Google Scholar
Zolotukhin, V. V. and Al'mukhamevdov, A. I. 1988. Traps of the Siberian platform. In , J. D. Macdougall (ed.) Continental Flood Basalts.Amsterdam, Kluwer, pp. 273–310Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Volcanism and mass extinctions
    • By Paul B. Wignall, School of Earth Sciences, University of Leeds, Leeds, LS2 9JT, UK
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Volcanism and mass extinctions
    • By Paul B. Wignall, School of Earth Sciences, University of Leeds, Leeds, LS2 9JT, UK
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Volcanism and mass extinctions
    • By Paul B. Wignall, School of Earth Sciences, University of Leeds, Leeds, LS2 9JT, UK
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.008
Available formats
×