Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T22:17:26.431Z Has data issue: false hasContentIssue false

12 - Second row heteronuclear diatomics

Published online by Cambridge University Press:  13 August 2009

Gordon A. Gallup
Affiliation:
University of Nebraska, Lincoln
Get access

Summary

The consideration of isoelectronic sequences can provide considerable physical understanding of structural details. We here give details of the calculation of a series of isoelectronic diatomic molecules from the second row of the periodic table, N2, CO, BF, and BeNe. By studying this sequence we see how the competition between nuclear charges affects bonding. All of these are closed-shell singlet systems, and, at least in the cases of the first two, conventional bonding arguments say there is a triple bond between the two atoms. We expect, at most, only a Van der Waals type of bond between Be and Ne, of course. Our calculations should predict this.

The three polar molecules in the series are interesting because they all have anomalous directions to their dipole moments, i.e., the direction is different from that predicted by an elementary application of the idea of electronegativity, accepting the fact that there may be ambiguity in the definition of electronegativity for Ne. We will see how VB ideas interpret these anomalous dipole moments.

We do the calculations with a 6-31G* basis in the same way as was done in Chapter 11 and for three arrangements of STO3G bases. This will allow us both to judge the stability of the qualitative predictions to the basis and to assess the ability of the calculations to obtain quantitative answers.

We have already treated N2 in Chapter 11, but will look at it here from a somewhat different point of view.

Type
Chapter
Information
Valence Bond Methods
Theory and Applications
, pp. 162 - 176
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×