Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:48:29.912Z Has data issue: false hasContentIssue false

2 - Status and distribution patterns of European ungulates: genetics, population history and conservation

Published online by Cambridge University Press:  26 April 2011

John D.C. Linnell
Affiliation:
Norwegian Institute for Nature Research
Frank E. Zachos
Affiliation:
Christian-Albrechts-University Kiel
Rory Putman
Affiliation:
Manchester Metropolitan University
Marco Apollonio
Affiliation:
Università degli Studi di Sassari, Sardinia
Reidar Andersen
Affiliation:
Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

Within Europe as a whole, the distributional range, population size and the status of many species has been greatly influenced by human activity – not simply through the negative influences of humans on land-use patterns and in overexploitation, but also through active attempts to ‘restore’ and ‘augment’ species distributions.

A number of indigenous subspecies have been (or may be currently) threatened whether due to habitat loss, overexploitation or simply by lack of positive management to protect them. In addition, the genetic integrity of such endangered taxa may be compromised by the introduction to those populations of animals of different genetic background in misguided, although well-intentioned, attempts to bolster dwindling populations. Even within well-established populations apparently not under threat, introduction of animals of different genetic types may have been quite commonplace (usually in an attempt to try and improve the ‘trophy quality’ of antlers) – and thus the special genetic status of particular local populations has been greatly altered by the introgression of alien genes. Reintroduction of species to local areas from which they had previously become extinct has also often been undertaken without due regard to the genetic provenance of those individuals released, thus causing other discontinuities in genetic distributions.

Type
Chapter
Information
Ungulate Management in Europe
Problems and Practices
, pp. 12 - 53
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, K. (1994) The establishment of a hybrid zone between red and sika deer (genus Cervus). Molecular Ecology 3, 551–562.CrossRefGoogle Scholar
Abernethy, K. (1998) Sika Deer in Scotland. Deer Commission for Scotland. Edinburgh, UK: The Stationery Office.Google Scholar
Acevedo, P., Cassinello, J. and Gortázar, C. (2006) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation 16, 3361–3376.CrossRefGoogle Scholar
Acevedo, P., Cassinello, J., Hortal, J. and Gortázar, C. (2007) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approach. Diversity and Distributions 13, 587–597.CrossRefGoogle Scholar
Amills, M., Jiménez, N., Jordana, J., et al. (2004) Low diversity in the major histocompatibility complex class II DRB1 gene of the Spanish ibex, Capra pyrenaica. Heredity 93, 266–272.CrossRefGoogle ScholarPubMed
Andersen, R., Herfindal, I., Linnell, J. D. C., et al. (2004a) When range expansion rate is faster in marginal habitats. Oikos 107, 210–214.CrossRefGoogle Scholar
Andersen, R., Linnell, J. D. C., Hustad, H. and Brainerd, S. (2004b) Large carnivores and human communities: a guide to coexistence in the 21st century. Norwegian Institute for Nature Research Temahefte 25, 1–48.Google Scholar
Andersen, R., Linnell, J. D. C. and Solberg, E. J. (2006) The future role of large carnivores on terrestrial trophic interactions: the northern temperate view. In Danell, K., Bergström, R., Duncan, P. and Pastor, J. (eds.) Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge, UK: Cambridge University Press, pp. 413–448.CrossRefGoogle Scholar
Anderung, C., Baubliene, J., Daugnora, L. and Götherström, A. (2006) Medieval remains from Lithuania indicate loss of a mitochondrial haplotype in Bison bonasus. Molecular Ecology 15, 3083.CrossRefGoogle ScholarPubMed
Apollonio, M., Andersen, R. and Putman, R. (2010a) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press. 604 pp.Google Scholar
Apollonio, M., Andersen, R. and Putman, R. (2010b) Present status and future challenges for European ungulate management. In Apollonio, M., Andersen, R., and Putman, R. (eds) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press, pp. 578–604.Google Scholar
Aragón, S., Braza, F., San José, C. and Fandos, P. (1998) Variation in skull morphology of roe deer (Capreolus capreolus) in western and central Europe. Journal of Mammalogy 79, 131–140.CrossRefGoogle Scholar
Aulagnier, S., Kranz, A., Lovari, S., et al. (2008) Capra ibex. In IUCN Red List of Threatened Species. Online: www.iucnredlist.org.Google Scholar
Avise, J. C. and Robinson, T. J. (2008) Hemiplasy: a new term in the lexicon of phylogenetics. Systematic Biology 57, 503–507.CrossRefGoogle ScholarPubMed
Baker, K. (2009) An investigation into the population genetic history of the British roe deer (Capreolus capreolus). Abstract for 9th European Roe Deer Congress held in Edinburgh, July 2009.Google Scholar
Balloux, F. and Lugon-Moulin, N. (2002) The estimation of population differentiation with microsatellite markers. Molecular Ecology 11, 155–165.CrossRefGoogle ScholarPubMed
Barancekova, M., Vallo, P., Prokesova, J., Koubek, P. (2007) Genetic roots of sika deer in the Czech Republic inferred from mitochondrial gene for cytochrome b. In 1st International Conference on GenusCervus, held at Primiero, Trentino, Italy. Abstracts, p. 68.Google Scholar
Barbosa, A. M. and Carranza, J. (2010) Lack of geographical variation in Y-chromosomal introns of red deer (Cervus elaphus). Journal of Negative Results 7, 1–4.Google Scholar
Bar-Gal, G. K., Smith, P., Tchernov, E., et al. (2002) Genetic evidence for the origin of the agrimi goat (Capra aegagrus cretica). Journal of Zoology, London 256, 369–377.CrossRefGoogle Scholar
Bartoš, L. (2009) Sika deer in Continental Europe. In McCullough, D. R., Takatsuki, S. and Kaji, K. (eds.) Sika Deer: Biology, Conservation and Management of Native and Introduced Populations, Tokyo: Springer, pp. 573–594.CrossRefGoogle Scholar
Bartoš, L. and Žirovnický, J. (1981) Hybridisation between red and sika deer. II. Phenotype analysis. Zoologischer Anzeiger, Jena 207, 271–287.Google Scholar
Bartoš, L., Hyanek, J. and Žirovnický, J. (1981) Hybridisation between red and sika deer. I. Craniological analysis. Zoologischer Anzeiger, Jena 207, 260–270.Google Scholar
Botezat, E. (1903) Gestaltung und Klassifikation der Geweihe des Edelhirsches, nebst einem Anhange über die Stärke der Karpathenhirsche und die zwei Rassen derselben. Gegenbaurs Morphologisches Jahrbuch 32(1), 104–158.Google Scholar
Burzynska, B., Olech, W. and Topczewski, J. (1999) Phylogeny and genetic variation of the European bison Bison bonasus based on mitochondrial DNA D-loop sequences. Acta Theriologica 44, 253–262.CrossRefGoogle Scholar
Cassinello, J., Serrano, E., Calabuig, G. and Pérez, J. M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851–866.CrossRefGoogle Scholar
Chadwick, A. H., Ratcliffe, P. R. and Abernethy, K. (1996) Sika deer in Scotland: density, population size, habitat use and fertility some comparisons with red deer. Scottish Forestry 50, 8–16.Google Scholar
Chapman, N. G. and Chapman, D. I. (1980) The distribution of fallow deer: a world wide review. Mammal Review 10, 61–138.CrossRefGoogle Scholar
Chapman, N. G., Claydon, K., Claydon, M. and Harris, S. (1985) Distribution and habitat selection by muntjac and other species of deer in a coniferous forest. Acta Theriologica 30, 287–303.CrossRefGoogle Scholar
Comşia, A. M.(1961) Biologia şi Principiile Culturii Vânatului. Bucharest: Editura Academiei.Google Scholar
Cooke, A. S. (1994) Colonisation by muntjac deer Muntiacus reevesi and their impact on vegetation. In Massey, M. E. and Welch, R. C. (eds.) Monks Wood National Nature Reserve. The Experience of 40 Years: 1953–93. Peterborough, UK: Natural England, pp. 45–61.Google Scholar
Cooke, A. S. (1995) Muntjac damage in woodland. Enact 3, 12–14.Google Scholar
Cooke, A. S. (1998) Survival and regrowth performance of coppiced ash (Fraxinus excelsior) in relation to browsing damage by muntjac deer (Muntiacus reevesi). Quarterly Journal of Forestry 92, 286–290.Google Scholar
Cooke, A. S. (2004) Muntjac and conservation woodland. In Quine, C. P., Shore, R. F. and Trout, R. C. (eds.) Managing Woodlands and their Mammals. Proceedings of a joint Mammal Society/Forestry Commission Symposium. Edinburgh, UK: Forestry Commission, pp. 65–69.Google Scholar
Cooke, A. S. (2005) Muntjac deer Muntiacus reevesi in Monks Wood NNR: their management and changing impact. In Gardiner, C. and Sparks, T. (eds.) Ten Years of Change: Woodland Research at Monks Wood NNR, 1993–2003. Research Report 613, Peterborough, UK: English Nature, pp. 65–74.Google Scholar
Cooke, A. S. (2006) Monitoring Muntjac Deer Muntiacus reevesi and their Impacts in Monks Wood National Nature Reserve. Research Report 681. Peterborough, UK: English Nature.Google Scholar
Cooke, A. S. and Farrell, L. (2001) Impact of muntjac deer (Muntiacus reevesi) at Monks Wood National Nature Reserve, Cambridgeshire, Eastern England. Forestry 74, 241–250.CrossRefGoogle Scholar
Cooke, A. S. and Lakhani, K. (1996) Damage to coppice regrowth by muntjac deer Muntiacus reevesi and protection with electric fencing. Biological Conservation 75, 231–238.CrossRefGoogle Scholar
Coulon, A., Cosson, J. F., Angibault, J. M., et al. (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Molecular Ecology 13, 2841–2850.CrossRefGoogle Scholar
Coulon, A., Guillot, G., Cosson, J-F., et al. (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology 15, 1669–1679.CrossRefGoogle ScholarPubMed
Daleszczyk, K. and Bunevich, A. N. (2009) Population viability analysis of European bison populations in Polish and Belarusian parts of Bialowieza Forest with and without gene exchange. Biological Conservation 142, 3068–3075.CrossRefGoogle Scholar
Diaz, A., Pinn, E. H. and Hannaford, J. (2005) Ecological impacts of sika deer on Poole Harbour saltmarshes. In Humphreys, J. and May, V. (eds.) The Ecology of Poole Harbour. Amsterdam, Netherlands: Elsevier.Google Scholar
Díaz, A., Hughes, S., Putman, R., Mogg, R. and Bond, J. M. (2006) A genetic study of sika (Cervus nippon) in the New Forest and in the Purbeck region, southern England: is there evidence of recent or past hybridization with red deer (Cervus elaphus)?Journal of Zoology, London 207, 227–235.CrossRefGoogle Scholar
Dobroruka, L. J. (1960) Der Karpatenhirsch, Cervus elaphus montanus Botezat 1903. Zoologischer Anzeiger 165, 481–483.Google Scholar
Dobson, M. (1998) Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Review 28, 77–88.CrossRefGoogle Scholar
Dolan, J. M. (1988) A deer of many lands: a guide to the subspecies of the red deer Cervus elaphus L. Zoonooz, 62(10), 4–34.Google Scholar
Feulner, P. G. D., Bielfeldt, W., Zachos, F. E., et al. (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93, 299–306.CrossRefGoogle Scholar
Flisikowski, K., Krasinska, M., Maj, A., et al. (2007) Genetic polymorphism in selected gene loci in a sample of Bialowieza population of European bison (Bison bonasus). Animal Science Papers and Reports 25, 221–230.Google Scholar
Forde, P. (1989) Comparative ecology of muntjac Muntiacus reevesi and roe deer Capreolus capreolus in a commercial coniferous forest. PhD thesis, University of Bristol, UK.Google Scholar
Frantz, A. C., Hamann, J-L. and Klein, F. (2008) Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. European Journal of Wildlife Research 54, 44–52.CrossRefGoogle Scholar
Gehle, T. and Herzog, S. (1998): Is there evidence for hybridization between red deer and sika deer in Germany? In Zomborszky, Z. (ed.) Advances in Deer Biology. Proceedings of the 4th International Deer Biology Congress. Kaposvár, Hungary: Pannon University of Agriculture, pp. 121–123.Google Scholar
Geist, V. (1998) Deer of the World. Their Evolution, Behavior, and Ecology. Mechanicsburg, PA: Stackpole Books.Google Scholar
Gentile, G., Vernesi, C., Vicario, S., et al. (2009) Mitochondrial DNA variation in roe deer (Capreolus capreolus) from Italy: evidence of admixture in one of the last C. c. italicus pure populations from central-southern Italy. Italian Journal of Zoology 76, 16–27.CrossRefGoogle Scholar
Giacometti, M., Roganti, R., Tann, D., Stahlberger-Saitbekova, N. and Obexer-Ruff, G. (2004) Alpine ibex Capra ibex ibex × domestic goat C. aegagrus domestica hybrids in a restricted area of southern Switzerland. Wildlife Biology 10, 137–143.CrossRefGoogle Scholar
Goodman, S., Barton, N., Swanson, G., Abernethy, K. and Pemberton, J. (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152, 355–371.Google ScholarPubMed
Goodman, S., Tamate, H., Wilson, R., et al. (2001) Bottlenecks, drift and differentiation: the population genetic structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology 10, 1357–1370.CrossRefGoogle ScholarPubMed
Gralak, B., Krasinska, M., Niemczewski, C., Krasinski, Z. A. and Zurkowski, M. (2004) Polymorphism of bovine microsatellite DNA sequences in the lowland European bison. Acta Theriologica 49, 449–456.CrossRefGoogle Scholar
Groot Bruinderink, G. W. T. A. and Hazebroek, E. (1996) Ungulate traffic collisions in Europe. Conservation Biology 10, 1059–1067.CrossRefGoogle Scholar
Groves, C. P. and Grubb, P. (1987) Relationships of living deer. In Wemmer, C. M. (ed.) Biology and Management of the Cervidae. Washington, DC: Smithsonian Institution Press, pp. 21–59.Google Scholar
Hajji, G. M., Zachos, F. E., Charfi-Cheikrouha, F. and Hartl, G. B. (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Animal Conservation 10, 229–235.CrossRefGoogle Scholar
Hajji, G. M., Charfi-Cheikrouha, F., Lorenzini, R., et al. (2008) Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodiversity and Conservation 17, 659–673.CrossRefGoogle Scholar
Harrington, R. (1973) Hybridisation among deer and its implications for conservation. Irish Forestry Journal 30, 64–78.Google Scholar
Harrington, R. (1982) The hybridisation of red deer (Cervus elaphus L. 1758) and Japanese sika deer (C. nippon Temminck, 1838). International Congress of Game Biologists 14, 559–571.Google Scholar
Hartl, G. B. and Pucek, Z. (1994) Genetic depletion in the European bison (Bison bonasus) and the significance of electrophoretic heterozygosity for conservation.Conservation Biology 8, 167–174.CrossRefGoogle Scholar
Hartl, G. B., Lang, G., Klein, F. and Willing, R. (1991a) Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66, 343–350.CrossRefGoogle Scholar
Hartl, G. B., Reimoser, F., Willing, R. and Köller, J. (1991b) Genetic variability and differentiation in roe deer (Capreolus capreolus L) of Central Europe. Genetics, Selection, Evolution 23, 281–299.CrossRefGoogle Scholar
Hartl, G. B., Apollonio, M. and Mattioli, L. (1995a) Genetic determination of cervid antlers in relation to their significance in social interactions. Acta Theriologica, Suppl. 3, 199–205.CrossRefGoogle Scholar
Hartl, G. B., Klein, F., Willing, R., Apollonio, M. and Lang, G. (1995b) Allozymes and the genetics of antler development in red deer (Cervus elaphus). Journal of Zoology, London 237, 83–100.CrossRefGoogle Scholar
Hartl, G. B., Hewison, A. J. M., Apollonio, M., Kurt, F. and Wiehler, J. (1998) Genetics of European roe deer. In Andersen, R., Duncan, P. and Linnell, J. D. C. (eds.) The European Roe Deer: The Biology of Success. Oslo: Scandinavian University Press, pp. 71–90.Google Scholar
Hartl, G. B., Zachos, F. and Nadlinger, K. (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. Comptes Rendus Biologies 326, S37–S42.CrossRefGoogle Scholar
Hemami, M. R., Watkinson, A. R. and Dolman, P. M. (2005) Population densities and habitat associations of introduced muntjac Muntiacus reevesi and native roe deer Capreolus capreolus in a lowland pine forest. Forest Ecology and Management 215, 224–238.CrossRefGoogle Scholar
Herrero, J. and Pérez, J. M. (2008) Capra pyrenaica. In IUCN Red List of Threatened Species. Online: www.iucnredlist.org
Hetherington, D. A. (2006) The lynx in Britain's past, present and future. Ecos 27, 66–70.Google Scholar
Hewison, A. J. M. (1995) Isozyme variation in roe deer in relation to their population history in Britain. Journal of Zoology, London 235, 279–288.CrossRefGoogle Scholar
Hewison, A. J. M. (1997) Evidence for a genetic component of female fecundity in British roe deer from studies of cranial morphometrics. Functional Ecology 11, 508–517.CrossRefGoogle Scholar
Hewison, A. J. M. and Staines, B. W. (2008) Roe deer. In Harris, S. and Yalden, D. W. (eds.) Mammals of the British Isles: Handbook, 4th edn. London: Mammal Society, pp. 605–617.Google Scholar
Hmwe, S. S., Zachos, F. E., Eckert, I., et al. (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biological Journal of the Linnean Society 88, 691–701.CrossRefGoogle Scholar
Hmwe, S. S., Zachos, F. E., Sale, J. B., Rose, H. R. and Hartl, G. B. (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. Journal of Zoology, London 270, 479–487.CrossRefGoogle Scholar
,International Committee on the Management of Large Herbivores in the Oostvaardersplassen (ICMO) (2006) Reconciling Nature and Human Interest. Report to the Dutch Ministry of Agriculture, Nature and Food Quality; The Hague ISBN 9032703528.Google Scholar
Kidjo, N., Feracci, G., Bideau, E., et al. (2007) Extirpation and reintroduction of the Corsican red deer Cervus elaphus corsicanus in Corsica. Oryx 41, 488–494.CrossRefGoogle Scholar
Kojola, I., Tuomivaara, J., Heikkinen, S., et al. (2009) European wild forest reindeer and wolves: endangered prey and predators. Annales Zoologica Fennici 46, 416–422.CrossRefGoogle Scholar
Kuehn, R., Schroeder, W., Pirchner, F. and Rottmann, O. (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conservation Genetics 4, 157–166.CrossRefGoogle Scholar
Kuehn, R., Haller, H., Schroeder, W. and Rottmann, O. (2004) Genetic roots of the red deer (Cervus elaphus) population in eastern Switzerland. Journal of Heredity 95, 136–143.CrossRefGoogle Scholar
Kuehn, R., Hindenlang, K. E., Holzgang, O., et al. (2007) Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus). Journal of Heredity 98, 13–22.CrossRefGoogle Scholar
Kurtén, B. (1968) Pleistocene Mammals of Europe. London: Weidenfeld and Nicolson.Google Scholar
Kurtén, B. and Anderson, E. (1980) Pleistocene Mammals of North America. New York: Columbia University Press.Google Scholar
Liberg, O., Bergström, R., Kindberg, J. and Essen, H. (2010) Ungulate management in Sweden. In Apollonio, M., Andersen, R., , R. and Putman, R. (eds.) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press, pp. 37–70.Google Scholar
Linnell, J. D. C., Duncan, P. and Andersen, R. (1998) The European roe deer: a portrait of a successful species. In Andersen, R., Duncan, P. and Linnell, J. D. C. (eds.) European Roe Deer: The Biology of Success. Oslo: Scandinavian University Press, pp. 1–22.Google Scholar
Linnell, J. D. C., Promberger, C., Boitani, L., et al. (2005) The linkage between conservation strategies for large carnivores and biodiversity: the view from the ‘half-full' forests of Europe. In Ray, J. C., Redford, K. H., Steneck, R. S. and Berger, J. (eds.) Carnivorous Animals and Biodiversity: Does Conserving One Save the Other?Washington, DC: Island Press, pp. 381–398.Google Scholar
Linnell, J. D. C., Breitenmoser, U., Breitenmoser-Würsten, C., Odden, J. and Arx, M. (2009) Recovery of Eurasian lynx in Europe: what part has reintroduction played? In Hayward, M. W. and Somers, M. J. (eds.) Reintroduction of Top-order Predators. Oxford, UK: Wiley-Blackwell, pp. 72–91.CrossRefGoogle Scholar
Lorenzini, R. and Lovari, S. (2006) Genetic diversity and phylogeography of the European roe deer: the refuge area theory revisited. Biological Journal of the Linnean Society 88, 85–100.CrossRefGoogle Scholar
Lorenzini, R., Mattioli, S. and Fico, R. (1998): Allozyme variation in native red deer Cervus elaphus of Mesola Wood, northern Italy: implications for conservation. Acta Theriologica, Suppl. 5, 63–74.CrossRefGoogle Scholar
Lorenzini, R., Lovari, S. and Masseti, M. (2002) The rediscovery of the Italian roe deer: genetic differentiation and management implications. Italian Journal of Zoology 69, 367–379.CrossRefGoogle Scholar
Lorenzini, R., San José, C., Braza, F. and Aragón, S. (2003) Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Italian Journal of Zoology 70, 89–99.CrossRefGoogle Scholar
Lovari, S., Cuccus, P., Murgia, A., et al. (2007) Space use, habitat selection and browsing effects of red deer in Sardinia. Italian Journal of Zoology 74, 179–189.CrossRefGoogle Scholar
Lowe, R. (1994) Deer management: developing the requirements for the establishment of diverse coniferous and broadleaf forests. Unpublished report, Coillte (Irish Forestry Board), Bray, Ireland.Google Scholar
Lowe, V. P. W. (1979) Wild and feral deer in Great Britain. Unpublished NERC contract report HF3/05/43, Institute of Terrestrial Ecology, Merlewood Research Station, 77 pp.Google Scholar
Lowe, V. P. W. and Gardiner, A. S. (1975) Hybridisation between red deer and sika deer, with reference to stocks in north-west England. Journal of Zoology, London 177, 553–566.CrossRefGoogle Scholar
Ludt, C. J., Shroeder, W., Rottmann, O and Kuehn, R. (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Molecular Phylogeny and Evolution 31, 1064–1083.CrossRefGoogle Scholar
Luenser, K., Fickel, J., Lehnen, A., Speck, S. and Ludwig, A. (2005) Low level of genetic variability in European bisons (Bison bonasus) from the Bialowieza National Park in Poland. European Journal of Wildlife Research 51, 84–87.CrossRefGoogle Scholar
Manceau, V., Crampe, J-P., Boursot, P. and Taberlet, P. (1999) Identification of evolutionary significant units in the Spanish wild goat, Capra pyrenaica (Mammalia, Artiodactyla). Animal Conservation 2, 33–39.CrossRefGoogle Scholar
Mattioli, S. (1990) Red deer in the Italian peninsula with particular reference to the Po delta population. Deer 8, 95–98.Google Scholar
Mattioli, S., Fico, R., Lorenzini, R. and Nobili, G. (2003) Mesola red deer: physical characteristics, population dynamics and conservation perspectives. Hystrix, Italian Journal of Mammalogy 14, 87–94.Google Scholar
Maudet, C., Miller, C., Bassano, B., et al. (2002) Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex Capra ibex (ibex). Molecular Ecology 11, 421–436.CrossRefGoogle Scholar
McDevitt, A. D., Edwards, C. J., O'Toole, P., et al. (2009) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mammalian Biology 74, 263–273.CrossRefGoogle Scholar
Melis, C., Jedrzejewska, B., Apollonio, M., et al. (2009) Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecology and Biogeography 18, 724–734.CrossRefGoogle Scholar
Micu, I., Náhlik, A., Neguş, S., Mihalache, I. and Szabó, I. (2010) Ungulates and their management in Romania. In Apollonio, M., Andersen, R. and Putman, R. (eds.) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press, pp. 319–337.Google Scholar
Milner, J. M., Nilsen, E. B. and Andreassen, H. P. (2007) Demographic side effects of selective hunting in ungulates and carnivores. Conservation Biology 21, 36–47.CrossRefGoogle ScholarPubMed
Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., et al. (1999) The Atlas of European Mammals. London: T. and A. D. Poyser.Google Scholar
Moco, G., Guerreiro, M., Ferreira, A. F., et al. (2006) The ibex Capra pyrenaica returns to its former Portugese range. Oryx 40, 351–354.CrossRefGoogle Scholar
Niethammer, G. (1963) Die Einbürgerung von Säugetieren und Vögeln in Europa. Hamburg, Germany: Paul Parey.Google Scholar
Novobilsky, A., Horackova, E., Hirtova, L., Modry, D. and Koudela, B. (2006) The giant liver fluke Fascioloides magna (Bassi 1875) in cervids in the Czech Republic and potential of its spreading to Germany. Parasitological Research 100, 549–553.CrossRefGoogle ScholarPubMed
Nussey, D. H., Coltman, D. W., Coulson, T., et al. (2005) Rapidly declining fine-scale spatial genetic structure in female red deer. Molecular Ecology 14, 3395–3405.CrossRefGoogle ScholarPubMed
Nussey, D. H., Pemberton, J., Donald, A. and Kruuk, L. E. B. (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97, 56–65.CrossRefGoogle Scholar
Olech, W. (1987) Analysis of inbreeding in European bison. Acta Theriologica 32, 373–387.CrossRefGoogle Scholar
Olech, W. (2008) Bison bonasus. In IUCN Red List of Threatened Species. Online: www.iucnredlist.org
Olech, W. and Perzanowski, K. (2002): A genetic background for reintroduction program of the European bison (Bison bonasus) in the Carpathians. Biological Conservation 108, 221–228.CrossRefGoogle Scholar
Pemberton, J. M., Albon, S. D., Guinness, F. E. and Clutton-Brock, T. H. (1988) Genetic variation and juvenile survival in red deer. Evolution 42, 921–934.CrossRefGoogle ScholarPubMed
Pemberton, J., Swanson, G., Barton, N., Livingstone, S. and Senn, H. (2006) Hybridisation between red and sika deer in Scotland. Deer 13, 22–26.Google Scholar
Pérez, J. M., Granados, J. E., Soriguer, R. C., et al. (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia: Artiodactyla). Mammal Review 32, 26–39.CrossRefGoogle Scholar
Pérez-Espona, S., Pérez-Barbería, F. J., McLeod, J. E., et al. (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Molecular Ecology 17, 981–996.CrossRefGoogle Scholar
Pérez-Espona, S., Pemberton, J. M. and Putman, R. J. (2009) Red and sika deer in the British Isles, current management issues and management policy. Mammalian Biology 74, 247–262.CrossRefGoogle Scholar
Perzanowski, K. and Olech, W. (2007) A future for European bison Bison bonasus in the Carpathian ecoregion?Wildlife Biology 13, 108–112.CrossRefGoogle Scholar
Perzanowski, K., Olech, W. and Kozak, I. (2004) Constraints for re-establishing a meta-population of the European bison in Ukraine. Biological Conservation 120, 345–353.CrossRefGoogle Scholar
Pitra, C., Fickel, J, Meijaard, E. and Groves, C. (2004) Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution 33, 880–895.CrossRefGoogle ScholarPubMed
Pitra, C., Rehbein, S. and Lutz, W. (2005) Tracing the genetic roots of the sika deer Cervus nippon naturalized in Germany and Austria. European Journal of Wildlife Research 51, 237–241.CrossRefGoogle Scholar
Prior, R. (1968) The Roe Deer of Cranborne Chase. Oxford, UK: Oxford University Press.Google Scholar
Proaktor, G., Coulson, T. and Milner-Gulland, E. J. (2007) Evolutionary responses to harvesting in ungulates. Journal of Animal Ecology 76, 669–678.CrossRefGoogle ScholarPubMed
Pucek, Z. (ed) (2004) European Bison. Status Survey and Conservation Action Plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Bison Specialist Group, IUCN.Google Scholar
Puddu, G., Maiorano, L., Falcucci, A., Corsi, F. and Boitani, L. (2009) Spatial-explicit assessment of current and future conservation options for the endangered Corsican red deer (Cervus elaphus corsicanus) in Sardinia. Biodiversity and Conservation 18, 2001–2016.CrossRefGoogle Scholar
Putman, R. J. (2010) Ungulates and their management in Great Britain and Ireland. In Apollonio, M., Andersen, R. and Putman, R. (eds.) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press, pp. 129–164.Google Scholar
Putman, R. J. and Hunt, E. (1994) Hybridisation between red and sika deer in Britain. Deer, 9, 104–110.Google Scholar
Radwan, J., Kawalko, A., Wojcik, J. M. and Babik, W. (2007) MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus. Molecular Ecology 16, 531–540.CrossRefGoogle Scholar
Randi, E., Alves, P. C., Carranza, J., et al. (2004) Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Molecular Ecology 13, 3071–3083.CrossRefGoogle ScholarPubMed
Ratcliffe, P. R. (1989) The control of red and sika deer populations in commercial forests. In Putman, R. J. (ed.) Mammals as Pests. London: Chapman and Hall, pp. 98–115.Google Scholar
Ratcliffe, P. R., Peace, A. J., Hewison, A. J. M., Hunt, E. J. and Chadwick, A. H. (1992) The origins and characterization of Japanese sika deer populations in Great Britain. In Maruyama, N., Bobek, B., Ono, Y., et al. (eds.) International Symposium on Wildlife Conservation: Present Trends and Perspectives for the 21st Century. Tokyo: Japan Wildlife Research Center, pp. 185–190.Google Scholar
Royo, L. J., Pajares, G., Alvarez, I., Fernández, I. and Goyache, F. (2007) Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): a phylogeographic reassessment within the European framework. Molecular Phylogenetics and Evolution 42, 47–61.CrossRefGoogle ScholarPubMed
Sempéré, A. J., Sokolov, V. E. and Danilkin, A. A. (1996) Capreolus capreolus. In Mammalian Species No. 538. American Society of Mammalogists. Online: www.mammalsociety.org.Google Scholar
Senn, H. V. and Pemberton, J. M. (2009) Variable extent of hybridisation between invasive sika (Cervus nippon) and native red deer (Cervus elaphus) in a small geographic area. Molecular Ecology 18, 862–876.CrossRefGoogle Scholar
Shackleton, D. M. (ed.) (1997) Wild Sheep and Goats and their Relatives. Status Survey and Conservation Action Plan for Caprinae. Gland, Switzerland and Cambridge, UK: IUCN/SSC Caprinae Specialist Group, IUCN.Google Scholar
Skog, A., Zachos, F. E., Rueness, E. K., et al. (2009) Phylogeography of red deer (Cervus elaphus) in Europe. Journal of Biogeography 36(1), 66–77.CrossRefGoogle Scholar
Slate, J., Kruuk, L. E. B., Marshall, T. C., Pemberton, J. M. and Clutton-Brock, T. H. (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proceedings of the Royal Society B–Biological Sciences 267, 1657–1662.CrossRefGoogle Scholar
Sommer, R. S., Zachos, F. E., Street, M., et al. (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quaternary Science Reviews 27, 714–733.CrossRefGoogle Scholar
Sommer, R. S., Fahlke, J. M., Schmölcke, U., Benecke, N. and Zachos, F. E. (2009) Quaternary history of the European roe deer Capreolus capreolus. Mammal Review 39, 1–16.CrossRefGoogle Scholar
Spear, D. and Chown, S. L. (2009) Non-indigenous ungulates as a threat to biodiversity. Journal of Zoology 279, 1–17.CrossRefGoogle Scholar
Stuart, A. J., Kosinysev, P. A., Higham, T. F. G. and Lister, A. M. (2004) Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431, 684–690.CrossRefGoogle ScholarPubMed
Temple, H. J. and Terry, A. (compilers) (2007) The Status and Distribution of European Mammals. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Thulin, C.-G. (2006) Microsatellite investigation of roe deer (Capreolus capreolus) in Scandinavia reveals genetic differentiation of a Baltic Sea Island population. European Journal of Wildlife Research 52, 228–235.CrossRefGoogle Scholar
Tiedemann, R., Nadlinger, K. and Pucek, Z (1998) Mitochondrial DNA: RFLP analysis reveals low levels of genetic variation in European bison Bison bonasus. Acta Theriologica, Suppl. 5, 83–87.CrossRefGoogle Scholar
Torres-Porras, J., Carranza, J. and Pérez-González, J. (2009) Selective culling of Iberian red deer stags (Cervus elaphus hispanicus) by selective montería in Spain. European Journal of Wildlife Research 55, 117–123.CrossRefGoogle Scholar
Vernesi, C., Pecchioli, E., Caramelli, D., et al. (2002) The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Molecular Ecology 11, 1285–1297.CrossRefGoogle ScholarPubMed
Wang, M. and Schreiber, A. (2001) The impact of habitat fragmentation and social structure on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86, 703–715.CrossRefGoogle Scholar
Ward, T. J., Bielawski, J. P., Davis, S. K., Templeton, J. W. and Derr, J. N. (1999) Identification of domestic cattle hybrids in wild cattle and bison species: a general approach using mtDNA markers and the parametric bootstrap. Animal Conservation 2, 51–57.CrossRefGoogle Scholar
Wemmer, C. (1998) Deer: Status Survey and Conservation Action Plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Deer Specialist Group, IUCN.Google Scholar
Wójcik, J. M., Kawalko, A., Tokarska, M., et al. (2009) Post-bottleneck mtDNA diversity in a free-living population of European bison: implications for conservation. Journal of Zoology, London 277, 81–87.CrossRefGoogle Scholar
Wray, S. (1994) Competition between muntjac and other herbivores in a commercial coniferous forest. Deer 9, 237–245.Google Scholar
Yalden, D. W. (1999) The History of British Mammals. London: T. and A.D. Poyser.Google Scholar
Zachos, F.E. (2009) Gene trees and species trees: mutual influences and interdependences of population genetics and systematics. Journal of Zoological Systematics and Evolutionary Research 47, 209–218.CrossRefGoogle Scholar
Zachos, F., Hartl, G. B., Apollonio, M. and Reutershan, T. (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mammalian Biology 68, 284–298.CrossRefGoogle Scholar
Zachos, F. E., Hmwe, S. S. and Hartl, G. B. (2006) Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla: Cervidae) populations from northern Germany. Journal of Zoological Systematics and Evolutionary Research 44, 167–174.CrossRefGoogle Scholar
Zachos, F. E., Althoff, C, Steynitz, Y., Eckert, I. and Hartl, G. B. (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. European Journal of Wildlife Research 53, 61–67.CrossRefGoogle Scholar
Zachos, F. E., Hajji, G. M., Hmwe, S. S., et al. (2009) Population viability analysis and genetic diversity of the endangered red deer population from Mesola, Italy. Wildlife Biology 15, 175–186.CrossRefGoogle Scholar
Zima, J., Kožená, I. and Hubálek, Z. (1990) Non-metrical cranial divergence between Cervus elaphus, C. nippon nippon and C. nippon hortulorum. Acta Scientarum Naturalium, Brno 24, 1–41.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×