Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:44:32.331Z Has data issue: false hasContentIssue false

11 - The role of pathogens in the population dynamics of European ungulates

Published online by Cambridge University Press:  26 April 2011

Marion L. East
Affiliation:
Leibniz Institute for Zoo and Wildlife Research
Bruno Bassano
Affiliation:
Gran Paradiso National Park
Bjørnar Ytrehus
Affiliation:
National Veterinary Institute
Rory Putman
Affiliation:
Manchester Metropolitan University
Marco Apollonio
Affiliation:
Università degli Studi di Sassari, Sardinia
Reidar Andersen
Affiliation:
Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

Numerous ecological studies have investigated how key factors such as resource availability and predation may influence the population dynamics of European ungulates (Clutton-Brock et al.,1985; Putman et al., 1996; Sæther, 1997; Forchhammer et al., 1998; Gaillard et al., 1998, 2000; Jędrzejewska and Jędrzejewski, 1998; Coulson et al., 2006). In comparison, research on the consequences of pathogen infection on ungulate population dynamics has been rather limited. In recent years interest in pathogen–host dynamics has increased not only among ecologists, in relation to these dynamics at a population level, but also among scientists in other disciplines such as veterinarians, immunologists and geneticists whose interests focus on the individual, cellular or genetic level.

As we will discuss, pathogen–host dynamics are complex and involve interconnected ecological, behavioural, physiological and genetic pathways. Because of this complexity it is often difficult to unravel these pathways, which is necessary to gain an understanding of the role of pathogens in shaping the population dynamics of ungulates. As the studies discussed in this chapter demonstrate, long-term research is necessary to reveal the role of pathogens on ungulate population dynamics. Unfortunately this requirement does not conform well to the current short-term nature of research funding.

Type
Chapter
Information
Ungulate Management in Europe
Problems and Practices
, pp. 319 - 348
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acevedo-Whitehouse, K., Vincente, J., Gortázar, C., et al. (2005) Genetic resistance to bovine tuberculosis in the Iberian wild boar. Molecular Ecology 14, 3209–3217.CrossRefGoogle ScholarPubMed
Agnew, P., Koella, J. C. and Michalakis, Y. (2000) Host life history responses to parasitism. Microbes and Infection 2, 891–896.CrossRefGoogle ScholarPubMed
Ahrens, W. and Pigeot, I. (2005) Handbook of Epidemiology. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Albon, S. D., Stien, A., Irvine, R. J., et al. (2002) The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society B–Biological Sciences 269, 1625–1632.CrossRefGoogle ScholarPubMed
Alibhai, S. K., Jewell, Z. C. and Towindo, S. S. (2001) Effect of immobilization on fertility in female black rhino(Diceros bicornis) Journal of Zoology, London 253, 333–345.CrossRefGoogle Scholar
Anderson, P. K., Cunningham, A. A., Patel, N. G., et al. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution 19, 535–545.CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1982) Coevolution of hosts and parasites. Parasitology 85, 411–426.CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford University Press.Google Scholar
Antonovics, J. (2009) The effect of sterilizing diseases on host abundance and distribution along environmental gradients. Proceedings of the Royal Society B–Biological Sciences 276, 1443–1448.CrossRefGoogle ScholarPubMed
Astobiza, I., Barral, M., Ruiz-Fons, F., et al. (2010) Molecular investigation of the occurrence of Coxiella burnetii in wildlife and ticks in an endemic area. Veterinary Microbiology [epub ahead of print]
Aviv, A. (2008) The epidemiology of human telomeres: faults and promises. Journal of Gerontology 63A, 979–983.Google Scholar
Bar-David, S., Lloyd-Smith, J. O. and Getz, W. M. (2006) Dynamics and management of infectious diseases in colonizing populations. Ecology, 87, 1215–1224.CrossRefGoogle ScholarPubMed
Barrett, L. G., Thrall, P. H., Burdon, J. J. and Linde, C. C. (2008) Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends in Ecology and Evolution 23, 678–685.CrossRefGoogle ScholarPubMed
Batten, C. A., Maan, S., Shaw, A. E., Maan, N. S. and Mertens, P. P. C. (2008) A European field strain of bluetongue virus derived from two parental vaccine strains by genome segment reassortment. Virus Research 137, 56–63.CrossRefGoogle ScholarPubMed
Begon, M., Hazel, S. M., Baxby, D., et al. (1999) Transmission dynamics of a zootic pathogen within and between wildlife host species. Proceedings of the Royal Society B–Biological Sciences 266, 1939–1945.CrossRefGoogle Scholar
Begon, M., Townsend, C. R. and Harper, J. L. (2006) Ecology: From Individuals to Ecosystems. Oxford, UK: Blackwell Publishing.Google Scholar
Behnke, J. M., Bajer, A., Sinski, E. and Wakelin, D. (2001) Interactions involving intestinal nematodes of rodents: experimental and field studies. Parasitology 122, S39–S49.CrossRefGoogle ScholarPubMed
Beldomenico, P. M., Telfer, S., Gebert, S., et al. (2008) Poor condition and infection: a vicious cycle in natural populations. Proceedings of the Royal Society B–Biological Sciences 275, 1753–1759.CrossRefGoogle Scholar
Bieber, C. and Ruf, T. (2005) Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for management of pulsed resource consumers. Journal of Applied Ecology 42, 1203–1213.CrossRefGoogle Scholar
Blanchong, J. A., Scribner, K. T., Kravchenko, S. N. and Winterstein, S. R. (2007) TB-infected deer are more closely related than non-infected deer. Biology Letters 3, 103–105.CrossRefGoogle ScholarPubMed
Bonsall, R. G. and Hassell, M. P. (1997) Apparent competition structures in ecological assemblies. Nature 388, 371–373.CrossRefGoogle Scholar
Boots, M. and Sasaki, A. (2002) Parasite driven extinction in spatially explicit host-parasite systems. American Naturalist 159, 706–713.CrossRefGoogle ScholarPubMed
Cattadori, I. M., Albert, R. and Boag, B. (2007) Variation in host susceptibility and infectiousness generated by co-infection: the myxoma-Trichostrongylus retortaeformis case in rabbits. Journal of the Royal Society Interface 4, 831–840.CrossRefGoogle ScholarPubMed
Cattadori, I. M., Boag, B. and Hudson, P. J. (2008) Parasite co-infection and interaction as drivers of host heterogeneity. International Journal of Parasitology 38, 371–380.CrossRefGoogle ScholarPubMed
Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. and Reynolds-Hogland, M. J. (2008) An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. Journal of Mammalogy 89, 973–990.CrossRefGoogle Scholar
Choisy, M. and Rohani, P. (2006) Harvesting can increase severity of wildlife disease epidemics. Proceedings of the Royal Society B–Biological Sciences 273, 2025–2034.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., Major, M. and Guinness, F. E. (1985) Population regulation in male and female red deer. Journal of Animal Ecology 54, 831–846.CrossRefGoogle Scholar
Coulson, T., Benton, T. G., Lundberg, P., et al. (2006) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proceedings of the Royal Society B–Biological Sciences 273, 547–555.CrossRefGoogle ScholarPubMed
Courchamp, F., Pontier, D., Langlais, M. and Artois, M. (1995) Population dynamics of feline immunodeficiency virus within cat populations. Journal of Theoretical Biology 175, 553–560.CrossRefGoogle ScholarPubMed
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449.CrossRefGoogle ScholarPubMed
Castro, F. and Bolker, B. (2005) Mechanisms of disease-induced extinction. Ecology Letters 8, 117–126.CrossRefGoogle Scholar
Diekmann, O. and Heesterbeek, J. A. P. (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Chichester, UK: Wiley.Google Scholar
East, M. L., Wibbelt, G., Lieckfeldt, D., et al. (2008) A Hepatozoon species genetically distinct from H. canis infecting spotted hyenas in the Serengeti ecosystem, Tanzania. Journal of Wildlife Diseases 44, 45–52.CrossRefGoogle Scholar
Easterling, D. R., Meehl, G. A., Parmesan, C., et al. (2000) Climate extremes: observations, modelling and impacts. Science 289, 2068–2074.CrossRefGoogle Scholar
Fenton, A. and Pedersen, A. B. (2005) Community epidemiology framework for classifying disease threats. Emerging Infectious Diseases 11, 1815–1821.CrossRefGoogle ScholarPubMed
Fernández-Pacheco, P., Fernández-Pinero, J., Agüero, M. and Jiménez-Clavero, M. A. (2008) Bluetongue virus serotype 1 in wild mouflon in Spain. Veterinary Record 162, 659–660.CrossRefGoogle ScholarPubMed
Ferroglio, E., Nebbia, P., Robino, P., Rossi, L. and Rosati, S. (2000) Mycobacterium paratuberculosis infection in two free-ranging Alpine ibex. Revue Scientifique et Technique 19, 859–862.CrossRefGoogle ScholarPubMed
Festa-Bianchet, M. (1989) Individual differences, parasites and the cost of reproduction for bighorn ewes (Ovis canadensis). Journal of Animal Ecology 58, 785–795.CrossRefGoogle Scholar
Forchhammer, M. C., and Asferg, T. (2000) Invading parasites cause a structural shift in red fox dynamics. Proceedings of the Royal Society B–Biological Sciences 267, 779–786.CrossRefGoogle Scholar
Forchhammer, M. C., Stenseth, N. C., Post, E. and Langvatn, R. (1998) Population dynamics of Norwegian red deer: density-dependence and climate variation. Proceedings of the Royal Society B–Biological Sciences 265, 341–350.CrossRefGoogle Scholar
Fraquelli, C., Carpi, G., Bregoli, M., et al. (2005) Epidemiology of paratuberculosis in two red deer (Cervus elaphus) populations of Trentino (Northern Italy). In Manning, E. J. B. and Nielsen, S. S. (eds.) Proceedings of the 8th International Colloquium on Paratuberculosis, held Copenhagen, Denmark. Madison, WI: International Association for Paratuberculosis, pp. 605–612.Google Scholar
Gaillard, J.-M., Festa-Bianchet, M. and Yoccoz, N. G. (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology and Evolution 13, 58–63.CrossRefGoogle ScholarPubMed
Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A. and Toïgo, C. (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics 31, 367–393.CrossRefGoogle Scholar
Gandon, S. (2004) Evolution of multihost parasites. Evolution 58, 455–469.CrossRefGoogle ScholarPubMed
Gasbarre, L. C. (1997) Effects of gastrointestinal nematode infection on the ruminant immune system. Veterinary Parasitology 72, 327–337.CrossRefGoogle ScholarPubMed
Ghani, A. C., Ferguson, N. M., Donnelly, C. A. and Anderson, R. M. (2003) Factors determining the pattern of the variant Creutzfeldt-Jakob disease (vCJD) epidemic in the UK. Proceedings of the Royal Society B–Biological Sciences 270, 689–698.CrossRefGoogle ScholarPubMed
Giacometti, M., Janovsky, M., Belloy, L. and Frey, J. (2002) Infectious keratokonjunctivitis of ibex, chamois and other Caprinae. Review of the Scientific and Technical Office for International Epidemiology 21, 335–345.CrossRefGoogle Scholar
Gibbs, E. P. and Greiner, E. C. (1994) The epidemiology of bluetongue. Comparative Immunology, Microbiology and Infectious Diseases 17, 207–220.CrossRefGoogle ScholarPubMed
Gloster, J., Burgin, L., Witham, C., Athanassiadou, M. and Mellor, P. S. (2008) Bluetongue in the United Kingdom and northern Europe in 2007 and key issues for 2008. Veterinary Record 162, 298–302.CrossRefGoogle ScholarPubMed
Godfroid, J. and Käsbohrer, A. (2002) Brucellosis in the European Union and Norway at the turn of the twenty-first century. Veterinary Microbiology 90, 135–145.CrossRefGoogle ScholarPubMed
Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. and Vicente, J. (2007) Diseases shared between wildlife and livestock: a European perspective. European Journal of Wildlife Research 53, 241–256.CrossRefGoogle Scholar
Gortázar, C., Torres, M. J., Vincente, J., et al. (2008) Bovine tuberculosis in Doñana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS ONE 3, e2776.CrossRefGoogle ScholarPubMed
Gould, E. A. and Higgs, S. (2009) Impact of climate change and other factors on emerging arbovirus diseases. Transactions Royal Society of Tropical Medicine and Hygiene 103, 109–121.CrossRefGoogle ScholarPubMed
Graham, A., Cattadori, I. M., Lloyd-Smith, J., Ferrari, M. and Bjørnstad, O. N. (2007) Transmission consequences of co-infection: cytokines writ large?Trends in Parasitology 23, 281–291.CrossRefGoogle ScholarPubMed
Grear, D. A., Samuel, M. D., Langenberg, J. A. and Keane, D. (2006) Demographic patterns and harvest vulnerability of chronic wasting disease infected white-tailed deer in Wisconsin. Journal of Wildlife Management 70, 546–553.CrossRefGoogle Scholar
Grenfell, B. and Harwood, J. (1997) (Meta) population dynamics of infectious diseases. Trends in Ecology and Evolution 12, 395–399.CrossRefGoogle ScholarPubMed
Gulland, F. M. D., Albon, S. D., Pemberton, J. M., Moorcroft, P. R. and Clutton-Brock, T. H. (1993) Parasite-associated polymorphism in a cyclic ungulate population. Proceedings of the Royal Society B–Biological Sciences 254, 7–13.CrossRefGoogle Scholar
Haarløv, N. (1964) Life cycle and distribution pattern of Lipoptena cervi (L.) (Dipt. Hippobosc.) on Danish deer. Oikos 15, 93–129.CrossRefGoogle Scholar
Hagemoen, R. I. M. and Reimers, E. (2002) Reindeer summer activity pattern in relation to weather and insect harassment. Journal of Animal Ecology 71, 883–892.CrossRefGoogle Scholar
Hamilton, W. D. and Zuk, M. (1982) Heritable true fitness and bright birds: a role for parasites?Science 218, 384–387.CrossRefGoogle Scholar
Handeland, K. and Slettbakk, T. (1994) Outbreaks of clinical cerebrospinal elaphostrongylosis in reindeer (Rangifer tarandus tarandus) in Finnmark, Norway, and their relation to climate conditions. Journal of Veterinary Medicine B 41, 407–410.CrossRefGoogle Scholar
Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. and Weil, H. (2009) Climate change and wildlife diseases: when does the host matter the most?Ecology 90, 912–920.CrossRefGoogle ScholarPubMed
Hestvik, G., Zahler-Rinder, M., Gavier-Widen, D., et al. (2007) A previously unidentified Chorioptes species infesting outer ear canals of moose (Alces alces): characterization of the mite and the pathology of infestation. ActaVeterinaria Scandinavica 49, 21.CrossRefGoogle Scholar
Hofer, H. and East, M. L. (1998) Biological conservation and stress. Advances in the Study of Behavior 27, 405–525.CrossRefGoogle Scholar
Hofer, H. and East, M. L. (2010). Impact of global climate change on wildlife hosts and their pathogens. Nova Acta Leopoldina NF111 (NR381), 103–110.Google Scholar
Holmes, E. C. (1999) Molecular phylogenies and the genetic structure of viral populations. In Stearns, S. C. and Koell, J. C. (eds.) Evolution in Health and Disease. Oxford, UK: Oxford University Press, pp. 173–182.Google Scholar
Hoste, H., Jackson, F., Athanasiadou, S., Thamsborg, S. M. and Hoskin, S. O. (2006) The effect of tannin-rich plants on parasitic nematodes in ruminants. Trend in Parasitology 22, 253–261.CrossRefGoogle ScholarPubMed
Hudson, P. J. and Greenman, J. (1998) Competition mediated by parasites: biological and theoretical progress. Trends in Ecology and Evolution 13, 387–390.CrossRefGoogle ScholarPubMed
Hughes, L. (2000) Biological consequences of global warming. Trends in Ecology and Evolution 15, 56–61.CrossRefGoogle ScholarPubMed
IImonen, P., Kotrschal, A. and Penn, D. J. (2008) Telomere attrition due to infection. Plos One 3, 2143.CrossRefGoogle Scholar
Irvine, R. J., Stien, A., Halvorsen, O., Langvatn, R. and Albon, S. D. (2000) Life-history strategies and population dynamics of abomasal nematodes in Svalbard reindeer (Rangifer tarandus platyrrhynchus). Parasitology 120, 297–311.CrossRefGoogle Scholar
Jones, M. E., Cockburn, A., Hamede, R., et al. (2008) Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the USA 105, 10 023–10 027.CrossRefGoogle ScholarPubMed
Jędrzejewska, B. and Jędrzejewski, W. (1998) Predation in Vertebrate Communities. Berlin: Springer.CrossRefGoogle Scholar
Kadulski, S. (1996) Ectoparasites of Cervidae in north-east Poland. Acta Parasitologica 41, 204–210.Google Scholar
Kaunisto, S., Kortet, R., Härkönen, L., et al. (2009) New bedding sites examination-based method to analyse deer ked (Lipoptena cervi) infection in cervids. Parasitological Research 104, 919–925.CrossRefGoogle ScholarPubMed
Kavaliers, M., Choleris, E. and Pfaff, D. W. (2005) Genes, odours and the recognition of parasitized individuals by rodents. Trends in Parasitology 21, 423–429.CrossRefGoogle ScholarPubMed
Keele, B. F., Jones, J. H., Terio, K. A., et al. (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1981) Repair and its evolution: survival versus reproduction. In Townsend, C. R. and Calow, P. (eds.) Physiological Ecology: An Evolutionary Approach to Resource Use. Oxford, UK: Blackwell Scientific Press, pp. 165–189.Google Scholar
Kjellander, P., Gaillard, J.-M., Hewison, M. and Liberg, O. (2004) Predation risk and longevity influence variation in fitness of female roe deer. Proceedings of the Royal Society B–Biological Sciences 271, S338–S340.CrossRefGoogle ScholarPubMed
Kramer-Schadt, S., Fernández, N. and Thulke, H. H. (2007) Potential ecological and epidemiological factors affecting the persistence of classical swine fever in wild boar Sus scrofa populations. Mammal Review 37, 1–20.CrossRefGoogle Scholar
Kramer-Schadt, S., Fernández, N., Eisinger, D., Grimm, V. and Thulke, H. H. (2009) Individual variations in infectiousness explain long-term disease persistence in wildlife populations. Oikos 118, 199–208.CrossRefGoogle Scholar
Krasińska, M. and Krasiński, Z. A. (2007) European Bison: The Nature Monograph. Białowieża, Poland: Mammal Research Institute, Polish Academy of Sciences.Google Scholar
Kutz, S. J., Hoberg, E. P., Nagy, J., Polley, L. and Elkin, B. (2004) ‘Emerging’ parasitic infections in arctic ungulates. Integrative and Comparative Biology 44, 109–118.CrossRefGoogle ScholarPubMed
Lafferty, K. (2009a) The ecology of climate change and infectious diseases. Ecology 90, 888–900.CrossRefGoogle ScholarPubMed
Lafferty, K. (2009b) Calling for an ecological approach to studying climate change and infectious diseases. Ecology 90, 932–933.CrossRefGoogle ScholarPubMed
Lee, K. (2006) Linking immune defenses and life history at the levels of the individual and the species. Integrative and Comparative Biology 46, 1000–1015.CrossRefGoogle ScholarPubMed
Lello, J. and Hussell, T. (2008) Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infections. Parasitology 135, 825–839.CrossRefGoogle Scholar
León-Vizcaíno, L., Ruiz de Ybáñez, M. R., Cubero, M. J., et al. (1999) Sarcoptic mange in Spanish ibex from Spain. Journal of Wildlife Diseases 35, 647–659.CrossRefGoogle ScholarPubMed
Lindholm, M. and Britton, T. (2007) Endemic persistence or disease extinction: the effect of separation into sub-communities. Theoretical Population Biology 72, 253–263.CrossRefGoogle ScholarPubMed
Lips, K. R., Diffendorfer, J., Mendelson III, J. R. and Sears, M. W. (2008) Riding the wave: reconciling the role of disease and climate change in amphibian declines. PLoS Biology 6, 72.CrossRefGoogle ScholarPubMed
LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. and Keesing, F. (2003) The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences USA 100, 567–571.CrossRefGoogle ScholarPubMed
Marco, I., López-Olvera, J. R., Rosell, R., et al. (2007) Severe outbreak of disease in the southern chamois (Rupicapra pyrenaica) associated with border disease virus infection. Veterinary Microbiology 120, 33–41.CrossRefGoogle ScholarPubMed
Marco, I., Rosell, R., Cabezón, O., et al. (2008) Epidemiological study of border disease virus infection in southern chamois (Rupicapra pyrenaica) after an outbreak of disease in the Pyrenees (NE Spain). Veterinary Microbiology 127, 29–38.CrossRefGoogle Scholar
Martin, L. B. (2009) Stress and immunity in wild vertebrates: timing is everything. General and Comparative Endocrinology 163, 70–76.CrossRefGoogle ScholarPubMed
Martin, L. B., Weil, Z. M. and Nelson, R. J. (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philosophical Transactions of the Royal Society B–Biological Sciences 363, 321–339.CrossRefGoogle ScholarPubMed
Mathews, F., Lovett, L., Rushton, S. and Macdonald, D. W. (2006) Bovine tuberculosis in cattle: reduced risk on wildlife-friendly farms. Biology Letters 2, 271–274.CrossRefGoogle ScholarPubMed
McCallum, H., Barlow, N. D. and Hone, J. (2001) How should pathogen transmission be modelled?Trends in Ecology and Evolution 16, 295–300.CrossRefGoogle ScholarPubMed
McDonald, R. A., Delahay, R. J., Carter, S. P., Smith, G. C. and Cheeseman, C. L. (2008) Perturbing implications of wildlife ecology for disease control. Trends in Ecology and Evolution 23, 53–56.CrossRefGoogle ScholarPubMed
Miller, M. W., Hobbs, N. T. and Tavener, S. J. (2006) Dynamics of prion disease transmission in mule deer. Ecological Applications 16, 2208–2214.CrossRefGoogle ScholarPubMed
Miller, R., Kaneene, J. B., Fitzgerald, S. D. and Schmitt, S. M. (2003) Evaluation of the influence of supplemental feeding of white-tailed deer (Odocoileus virginianus) on the prevalence of bovine tuberculosis in the Michigan wild deer population. Journal of Wildlife Diseases 39, 84–95.CrossRefGoogle ScholarPubMed
Mintiens, K., Méroc, E., Mellor, P. S., et al. (2008) Possible routes of introduction of bluetongue virus serotype 8 into the epicentre of 2006 epidemic in north-western Europe. Preventative Veterinary Medicine 87, 131–144.CrossRefGoogle ScholarPubMed
Monaco, F., Camma, C., Serini, S. and Savini, G. (2006) Differentiation between field and vaccine strain of bluetongue virus serotype 16. Veterinary Microbiology 116, 45–52.CrossRefGoogle ScholarPubMed
Monteys, V. S. I., Ventura, D., Pages, N., Aranda, C. and Escosa, R. (2005) Expansion of Culicoides imicola, the main bluetongue virus vector in Europe, into Catalonia, Spain. Veterinary Record 156, 415–417.CrossRefGoogle Scholar
Moritz, C., Patton, J. L., Conroy, C. J., et al. (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 10, 261–264.CrossRefGoogle Scholar
Natoli, E., Say, L., Cafazzo, S., et al. (2005) Bold attitude males make urban feral domestic cats more vulnerable to feline immunodeficiency virus. Neuroscience and Biobehavioral Reviews 29, 151–157.CrossRefGoogle ScholarPubMed
Olde Riekerink, R. G. M., Dominici, A., Barkema, H. W. and Smit, A. J. (2005) Seroprevalence of pestivirus in four species of alpine wild ungulates in the High Valley of Susa, Italy. Veterinary Microbiology 108, 297–303.CrossRefGoogle ScholarPubMed
Oleaga, A., Casais, R., González-Quirós, P., Prieto, M. and Gortázar, C. (2008) Sarcoptic mange in red deer from Spain: improved surveillance or disease emergence?Veterinary Parasitology 154, 103–113.CrossRefGoogle ScholarPubMed
Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.CrossRefGoogle ScholarPubMed
Paterson, S., Wilson, K. and Pemberton, J. M. (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Sciences of the USA 95, 3714–3719.CrossRefGoogle Scholar
Patz, J. A. and Reisen, W. K. (2001) Immunology, climate change and vector-borne diseases. Trends in Immunology 22, 171–172.CrossRefGoogle ScholarPubMed
Pedersen, C. and Post, E. (2008) Interactions between herbivory and warming in aboveground biomass production of arctic vegetation. BMC Ecology 8, 17.CrossRefGoogle ScholarPubMed
Pelletier, F., Hogg, J. T. and Festa-Bianchet, M. (2004) Effect of chemical immobilization on the social status of bighorn rams. Animal Behaviour 67, 1163–1165.CrossRefGoogle Scholar
Pioz, M., Loison, A., Gibert, P., et al. (2007) Transmission of a pestivirus infection in a population of Pyrenean chamois. Veterinary Microbiology 119, 19–30.CrossRefGoogle Scholar
Pioz, M., Loison, A., Gauthier, D., et al. (2008) Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia 155, 691–704.CrossRefGoogle Scholar
Plowright, W. (1982) The effect of rinderpest and rinderpest control on wildlife in Africa. Symposia of the Zoological Society, London 50, 1–28.Google Scholar
Pontier, D., Fromont, E., Courchamp, F., Artois, M. and Yoccoz, N. G. (1998) Retroviruses and sexual size dimorphism in domestic cats (Felis catus L.). Proceedings of the Royal Society B–Biological Sciences 265, 167–173.CrossRefGoogle Scholar
Purse, B. V., Mellor, P. S., Rogers, D. J., et al. (2005) Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology 3, 171–181.CrossRefGoogle Scholar
Putman, R. J., Langbein, J., Hewison, A. J. M. and Sharma, S. K. (1996) Relative roles of density-dependent and density-independent factors in the population dynamics of British deer. Mammal Review 26, 81–101.CrossRefGoogle Scholar
Raffel, T. R., Martin, L. B. and Rohr, J. R. (2008) Parasites as predators: unifying natural enemy ecology. Trends in Ecology and Evolution 23, 610–618.CrossRefGoogle ScholarPubMed
Rossi, L., Meneguz, P. G., DeMartin, P. and Rodolfi, M. (1995) The epizootiology of sarcoptic mange in chamois, Rupicapra rupicapra, from the Italian eastern Alps. Parasitologia 37, 233–240.Google ScholarPubMed
Ruiz-Fons, F., Fernández-de-Mera, I. G., Acevedo, P., et al. (2006) Ixodid ticks parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus scrofa) from Spain: geographical and temporal distribution. Veterinary Parasitology 140, 133–142.CrossRefGoogle Scholar
Ruiz-Fons, S., Reyes-Garcia, A. R., Alcaide, V. and Gortázar, C. (2008a) Spatial and temporal evolution of bluetongue virus in wild ruminants, Spain. Emerging Infectious Diseases 14, 951–953.CrossRefGoogle ScholarPubMed
Ruiz-Fons, S., Segalés, J. and Gortázar, C. (2008b) A review of the viral diseases of the European wild boar: effect on population dynamics and reservoir role. Veterinary Journal 176, 158–169.CrossRefGoogle Scholar
Ruiz-Fons, F., Rodríguez, O., Torina, A., Gortázar, C. and Fuente, J. (2008c) Prevalence of Coxiella burnetii infection in wild and farmed ungulates. Veterinary Microbiology 126, 282–286.CrossRefGoogle ScholarPubMed
Ryser-Degiorgis, M. P., Bischof, D. F., Marreros, N., et al. (2009) Detection of Mycoplasma conjunctivae in the eyes of healthy, free-ranging Alpine ibex: possible involvement of Alpine ibex as carriers for the main causing agent of infectious keratoconjunctivitis in wild Caprinae. Veterinary Microbiology 2, 368–374.CrossRefGoogle Scholar
Salinas, J., Caro, M. R., Vincent, J., et al. (2009) High prevalence of antibodies against Chlamydiaceae and Chlamydophila abortus in wild ungulates using two ‘in house’ blocking-ELISA tests. Veterinary Microbiology 16, 46–53.CrossRefGoogle Scholar
Sapolsky, R. M. (1992) Neuroendocrinology of the stress response. In Becker, J. B.Breedlove, S. M. and Crews, D. (eds.) Behavioral Endocrinology. Cambridge, MA: MIT Press, pp.287–324.Google Scholar
Schauber, E. M. and Woolf, A. (2003) Chronic wasting disease in deer and elk: a critique of current models and their applications. Wildlife Society Bulletin 31, 610–616.Google Scholar
Schettler, E., Steinbach, F., Eschenbacher-Kaps, I., et al. (2006) Surveillance for prion disease in cervids, Germany. Emerging Infectious Diseases 12, 319–322.CrossRefGoogle ScholarPubMed
Smith, K. F., Sax, D. F. and Lafferty, K. D. (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology 20, 1349–1357.CrossRefGoogle ScholarPubMed
Smith, K. F., Acevedo-Whitehouse, K. and Pedersen, A. B. (2009b) The role of infectious diseases in biological conservation. Animal Conservation 12, 1–12.CrossRefGoogle Scholar
Smith, M., Telfer, S., Kallio, E. R., et al. (2009a). Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences of the USA 106, 7905–7909.CrossRefGoogle ScholarPubMed
Sommer, S. (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology 2, 16.CrossRefGoogle ScholarPubMed
Szczurek, B. and Kadulski, S. (2004) Ectoparasites on fallow deer, Dama dama (L.) in Pomerania, Poland. Acta Parasitologica 49, 80–86.Google Scholar
Sæther, B.-E. (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution 12, 143–149.CrossRefGoogle ScholarPubMed
Thomson, G. R., Vosloo, W. and Bastos, A. D. S. (2003) Foot and mouth disease in wildlife. Virus Research 91, 145–161.CrossRefGoogle ScholarPubMed
Thrall, P. H., Antonovics, J. and Hall, D. W. (1993) Host and pathogen coexistence in sexually transmitted and vector-borne diseases characterized by frequency-dependent disease transmission. American Naturalist 142, 543–552.CrossRefGoogle Scholar
Tompkins, D. M. and Begon, M. (1999) Parasites can regulate wildlife populations. Parasitology Today 15, 311–313.CrossRefGoogle ScholarPubMed
Vikøren, T., Ytrehus, B. and Handeland, K. (2008) Årsrapport for 2006 og 2007. Helseovervakingsprogrammet for hjortevilt (HOP). Report Series 19. Oslo: National Veterinary Institute.Google Scholar
Vincente, J.Höfle, U., Garrido, J. M., et al. (2007) Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Veterinary Research 38, 451–464.CrossRefGoogle Scholar
Webb, S. D., Keeling, M. J. and Boot, M. (2007) Spatially extended host-parasite interactions: the role of recovery and immunity. Theoretical Population Biology 71, 251–266.CrossRefGoogle ScholarPubMed
Weladji, R. B., Holand, Ø. and Almøy, T. (2003) Use of climatic data to assess the effect of insect harassment on the autumn weight of reindeer (Rangifer tarandus) calves. Rangifer 22, 33–50.CrossRefGoogle Scholar
Wikelski, M. and Cooke, S. J. (2006) Conservation physiology. Trends in Ecology and Evolution 21, 38–46.CrossRefGoogle ScholarPubMed
Williams, S. E., Bolitho, E. E. and Fox, S. (2003) Climate change in Australian tropical forests: an impending environmental catastrophe. Proceedings of the Royal Society B–Biological Sciences 270, 1887–1892.CrossRefGoogle Scholar
Wingfield, J. C. (2008) Comparative endocrinology, environment and global change. General and Comparative Endocrinology 157, 207–216.CrossRefGoogle ScholarPubMed
Wobeser, G. A. (2006) Essentials of Disease in Wild Animals. Oxford, UK: Wiley-Blackwell Publishing.Google Scholar
Woolhouse, M. E. (2002) Population biology of emerging and re-emerging pathogens. Trends in Microbiology 10, 3–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×